메뉴 건너뛰기




Volumn 18, Issue , 2017, Pages

A deep auto-encoder model for gene expression prediction

Author keywords

Deep learning; Gene expression; Multilayer perceptron; Predictive model; Stacked denoising auto encoder

Indexed keywords

GENE EXPRESSION PROFILING; GENOMICS; GENOTYPE; LEARNING; NONHUMAN; PERCEPTRON; PREDICTION; RANDOM FOREST; YEAST; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; GENETICS; PROCEDURES; SINGLE NUCLEOTIDE POLYMORPHISM;

EID: 85034028837     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/s12864-017-4226-0     Document Type: Article
Times cited : (87)

References (90)
  • 2
    • 84885639459 scopus 로고    scopus 로고
    • Expression quantitative trait loci: present and future
    • Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Phil Trans R Soc B. 2013; 368(1620):20120362.
    • (2013) Phil Trans R Soc B , vol.368 , Issue.1620 , pp. 20120362
    • Nica, A.C.1    Dermitzakis, E.T.2
  • 3
    • 84920736982 scopus 로고    scopus 로고
    • Methods for population-based eqtl analysis in human genetics
    • Lu T, Andrew Q, Frederick L, Xinghua S. Methods for population-based eqtl analysis in human genetics. Tsinghua Sci Technol. 2015; 19(6):624-34.
    • (2015) Tsinghua Sci Technol , vol.19 , Issue.6 , pp. 624-634
    • Lu, T.1    Andrew, Q.2    Frederick, L.3    Xinghua, S.4
  • 4
    • 0037177625 scopus 로고    scopus 로고
    • Genetic Dissection of Transcriptional Regulation in Budding Yeast
    • Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic Dissection of Transcriptional Regulation in Budding Yeast. Science. 2002; 296(5568):752-755.
    • (2002) Science , vol.296 , Issue.5568 , pp. 752-755
    • Brem, R.B.1    Yvert, G.2    Clinton, R.3    Kruglyak, L.4
  • 5
    • 23644434284 scopus 로고    scopus 로고
    • Genetic interactions between polymorphisms that affect gene expression in yeast
    • Brem RB, Storey JD, Whittle J, Kruglyak L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature. 2005; 436(7051):701-3.
    • (2005) Nature , vol.436 , Issue.7051 , pp. 701-703
    • Brem, R.B.1    Storey, J.D.2    Whittle, J.3    Kruglyak, L.4
  • 6
    • 84857467272 scopus 로고    scopus 로고
    • Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies
    • Fusi N, Stegle O, Lawrence ND. Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies. PLoS Comput Biol. 2012; 8(1):1002330.
    • (2012) PLoS Comput Biol , vol.8 , Issue.1 , pp. 1002330
    • Fusi, N.1    Stegle, O.2    Lawrence, N.D.3
  • 7
    • 77955505742 scopus 로고    scopus 로고
    • A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies
    • Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol. 2010; 6(5):e1000770.
    • (2010) PLoS Comput Biol , vol.6 , Issue.5
    • Stegle, O.1    Parts, L.2    Durbin, R.3    Winn, J.4
  • 8
    • 61849171085 scopus 로고    scopus 로고
    • Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots
    • Kang HM, Ye C, Eskin E. Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Genetics. 2008; 180(4):1909-25.
    • (2008) Genetics , vol.180 , Issue.4 , pp. 1909-1925
    • Kang, H.M.1    Ye, C.2    Eskin, E.3
  • 9
    • 84901313606 scopus 로고    scopus 로고
    • Learning gene networks under snp perturbations using eqtl datasets
    • Zhang L, Kim S. Learning gene networks under snp perturbations using eqtl datasets. PLoS Comput Biol. 2014; 10(2):e1003420.
    • (2014) PLoS Comput Biol , vol.10 , Issue.2
    • Zhang, L.1    Kim, S.2
  • 12
    • 70149098541 scopus 로고    scopus 로고
    • Statistical Estimation of Correlated Genome Associations to a Quantitative Trait Network
    • Kim S, Xing EP. Statistical Estimation of Correlated Genome Associations to a Quantitative Trait Network. PLoS Genet. 2009; 5(8):1000587.
    • (2009) PLoS Genet , vol.5 , Issue.8 , pp. 1000587
    • Kim, S.1    Xing, E.P.2
  • 13
    • 80053450397 scopus 로고    scopus 로고
    • Graph-structured multi-task regression and an efficient optimization method for general fused lasso
    • arXiv:1005.3579v1
    • Chen X, Kim S, Lin Q, Carbonell JG, Xing EP. Graph-structured multi-task regression and an efficient optimization method for general fused lasso. 2010. arXiv:1005.3579v1.
    • (2010)
    • Chen, X.1    Kim, S.2    Lin, Q.3    Carbonell, J.G.4    Xing, E.P.5
  • 15
    • 84897676013 scopus 로고    scopus 로고
    • Modular network construction using eQTL data: an analysis of computational costs and benefits
    • Ho YY, Cope LM, Parmigiani G. Modular network construction using eQTL data: an analysis of computational costs and benefits. Front Genet. 2014; 5(40):2151-63. doi: 10.3389/fgene.2014.00040.
    • (2014) Front Genet , vol.5 , Issue.40 , pp. 2151-2163
    • Ho, Y.Y.1    Cope, L.M.2    Parmigiani, G.3
  • 16
    • 84915747992 scopus 로고    scopus 로고
    • Mapping eQTL networks with mixed graphical models
    • Tur I, Roberato A, Castelo R. Mapping eQTL networks with mixed graphical models. Genetics. 2014; 198(4):1377-93.
    • (2014) Genetics , vol.198 , Issue.4 , pp. 1377-1393
    • Tur, I.1    Roberato, A.2    Castelo, R.3
  • 17
    • 34548711825 scopus 로고    scopus 로고
    • Detection of eqtl modules mediated by activity levels of transcription factors
    • Sun W, Yu T, Li KC. Detection of eqtl modules mediated by activity levels of transcription factors. Bioinformatics. 2007; 23(17):2290-7.
    • (2007) Bioinformatics , vol.23 , Issue.17 , pp. 2290-2297
    • Sun, W.1    Yu, T.2    Li, K.C.3
  • 24
    • 84875990952 scopus 로고    scopus 로고
    • A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines
    • Liang L, Morar N, Dixon AL, Lathrop GM, Abecasis GR, Moffatt MF, Cookson WO. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res. 2013; 23(4):716-26.
    • (2013) Genome Res , vol.23 , Issue.4 , pp. 716-726
    • Liang, L.1    Morar, N.2    Dixon, A.L.3    Lathrop, G.M.4    Abecasis, G.R.5    Moffatt, M.F.6    Cookson, W.O.7
  • 27
    • 84880014220 scopus 로고    scopus 로고
    • Variants in exons and in transcription factors affect gene expression in trans
    • Kreimer A, Pe'er I. Variants in exons and in transcription factors affect gene expression in trans. Genome Biol. 2013; 14(7):R71.
    • (2013) Genome Biol , vol.14 , Issue.7 , pp. R71
    • Kreimer, A.1    Pe'er, I.2
  • 28
    • 83055168377 scopus 로고    scopus 로고
    • Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions
    • Schlattl A, Anders S, Waszak SM, Huber W, Korbel JO. Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res. 2011; 21(12):2004-13.
    • (2011) Genome Res , vol.21 , Issue.12 , pp. 2004-2013
    • Schlattl, A.1    Anders, S.2    Waszak, S.M.3    Huber, W.4    Korbel, J.O.5
  • 32
    • 77951439152 scopus 로고    scopus 로고
    • Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS
    • Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010; 6(4):e1000888.
    • (2010) PLoS Genet , vol.6 , Issue.4
    • Nicolae, D.L.1    Gamazon, E.2    Zhang, W.3    Duan, S.4    Dolan, M.E.5    Cox, N.J.6
  • 33
    • 84984796854 scopus 로고    scopus 로고
    • Genomes, Evolution, and Culture: Past, Present, and Future of Humankind
    • USA: Wiley-Blackwell
    • Herrera RJ, Garcia-Bertrand R, Salzano FM. Genomes, Evolution, and Culture: Past, Present, and Future of Humankind. USA: Wiley-Blackwell; 2016.
    • (2016)
    • Herrera, R.J.1    Garcia-Bertrand, R.2    Salzano, F.M.3
  • 34
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1996; 58(1):267-88.
    • (1996) J R Stat Soc Ser B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 35
    • 84863505275 scopus 로고    scopus 로고
    • Leveraging input and output structures for joint mapping of epistatic and marginal eqtls
    • Lee S, Xing EP. Leveraging input and output structures for joint mapping of epistatic and marginal eqtls. Bioinformatics. 2012; 28(12):137-46.
    • (2012) Bioinformatics , vol.28 , Issue.12 , pp. 137-146
    • Lee, S.1    Xing, E.P.2
  • 37
    • 84902441107 scopus 로고    scopus 로고
    • Graph-regularized dual lasso for robust eqtl mapping
    • Cheng W, Zhang X, Guo Z, Shi Y, Wang W. Graph-regularized dual lasso for robust eqtl mapping. Bioinformatics. 2014; 30(12):139-48.
    • (2014) Bioinformatics , vol.30 , Issue.12 , pp. 139-148
    • Cheng, W.1    Zhang, X.2    Guo, Z.3    Shi, Y.4    Wang, W.5
  • 39
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001; 45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 40
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifier (with discussion and a rejoinder by the author)
    • Breiman L, et al. Arcing classifier (with discussion and a rejoinder by the author). Ann Stat. 1998; 26(3):801-49.
    • (1998) Ann Stat , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 41
    • 33646430006 scopus 로고    scopus 로고
    • Extremely randomized trees
    • Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006; 63(1):3-42.
    • (2006) Mach Learn , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 42
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning
    • New York: Springer
    • Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New York: Springer; 2001.
    • (2001)
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 44
    • 84875980888 scopus 로고    scopus 로고
    • Robust prediction of expression differences among human individuals using only genotype information
    • Manor O, Segal E. Robust prediction of expression differences among human individuals using only genotype information. PLoS Genet. 2013; 9(3):1003396.
    • (2013) PLoS Genet , vol.9 , Issue.3 , pp. 1003396
    • Manor, O.1    Segal, E.2
  • 45
    • 84941625652 scopus 로고    scopus 로고
    • Genoexp: a web tool for predicting gene expression levels from single nucleotide polymorphisms
    • Manor O, Segal E. Genoexp: a web tool for predicting gene expression levels from single nucleotide polymorphisms. Bioinformatics. 2015; 31(11):1848-50.
    • (2015) Bioinformatics , vol.31 , Issue.11 , pp. 1848-1850
    • Manor, O.1    Segal, E.2
  • 46
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18(7):1527-54.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 48
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn. 2009; 2(1):1-27.
    • (2009) Found Trends Mach Learn , vol.2 , Issue.1 , pp. 1-27
    • Bengio, Y.1
  • 49
    • 84902462761 scopus 로고    scopus 로고
    • Deep learning of the tissue-regulated splicing code
    • Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated splicing code. Bioinformatics. 2014; 30(12):i121-9.
    • (2014) Bioinformatics , vol.30 , Issue.12 , pp. 121-129
    • Leung, M.K.1    Xiong, H.Y.2    Lee, L.J.3    Frey, B.J.4
  • 50
    • 84970899194 scopus 로고    scopus 로고
    • Deep modeling of gene expression regulation in an Erythropoiesis model
    • Denas O, Taylor J. Deep modeling of gene expression regulation in an Erythropoiesis model. In: Representation Learning, ICML Workshop: 2013.
    • (2013) Representation Learning, ICML Workshop
    • Denas, O.1    Taylor, J.2
  • 51
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • Di Lena P, Nagata K, Baldi P. Deep architectures for protein contact map prediction. Bioinformatics. 2012; 28(19):2449-57.
    • (2012) Bioinformatics , vol.28 , Issue.19 , pp. 2449-2457
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 52
    • 85011370897 scopus 로고    scopus 로고
    • Accurate de novo prediction of protein contact map by ultra-deep learning model
    • Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput Biol. 2017; 13(1):1005324.
    • (2017) PLoS Comput Biol , vol.13 , Issue.1 , pp. 1005324
    • Wang, S.1    Sun, S.2    Li, Z.3    Zhang, R.4    Xu, J.5
  • 53
    • 84870415234 scopus 로고    scopus 로고
    • Predicting protein residue-residue contacts using deep networks and boosting
    • Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics. 2012; 28(23):3066-72.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3066-3072
    • Eickholt, J.1    Cheng, J.2
  • 54
    • 84984984288 scopus 로고    scopus 로고
    • Protein Residue Contacts and Prediction Methods
    • Adhikari B, Cheng J. Protein Residue Contacts and Prediction Methods. Methods Mol Biol. 2016; 1415:463-76.
    • (2016) Methods Mol Biol , vol.1415 , pp. 463-476
    • Adhikari, B.1    Cheng, J.2
  • 55
    • 84988556622 scopus 로고    scopus 로고
    • AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling In: Frasconi P, Landwehr N, Manco G, Vreeken J, editors
    • Cham: Springer
    • Wang S, Sun S, Xu J. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling In: Frasconi P, Landwehr N, Manco G, Vreeken J, editors. Machine Learning and Knowledge Discovery in Databases. ECML PKDD. Lecture Notes in Computer Science, vol 9852. Cham: Springer: 2016. p. 1-16.
    • (2016) Machine Learning and Knowledge Discovery in Databases. ECML PKDD. Lecture Notes in Computer Science , vol.9852 , pp. 1-16
    • Wang, S.1    Sun, S.2    Xu, J.3
  • 56
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: predicting protein disorder using boosting and deep networks
    • Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC Bioinformatics. 2013; 14(1):88.
    • (2013) BMC Bioinformatics , vol.14 , Issue.1 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 57
    • 84938318602 scopus 로고    scopus 로고
    • DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields
    • Wang S, Weng S, Ma J, Tang Q. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields. Int J Mol Sci. 2015; 16(8):17315-30.
    • (2015) Int J Mol Sci , vol.16 , Issue.8 , pp. 17315-17330
    • Wang, S.1    Weng, S.2    Ma, J.3    Tang, Q.4
  • 58
    • 84919913066 scopus 로고    scopus 로고
    • Deep supervised and convolutional generative stochastic network for protein secondary structure prediction
    • Zhou J, Troyanskaya O. Deep supervised and convolutional generative stochastic network for protein secondary structure prediction. In: International Conference on Machine Learning: 2014. p. 745-753.
    • (2014) International Conference on Machine Learning , pp. 745-753
    • Zhou, J.1    Troyanskaya, O.2
  • 59
    • 84954113329 scopus 로고    scopus 로고
    • Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields
    • Wang S, Peng J, Ma J, Xu J. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields. Sci Rep. 2016; 6:18962.
    • (2016) Sci Rep , vol.6 , pp. 18962
    • Wang, S.1    Peng, J.2    Ma, J.3    Xu, J.4
  • 60
    • 84923265167 scopus 로고    scopus 로고
    • A deep learning network approach to ab initio protein secondary structure prediction
    • Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform. 2015; 12(1):103-12.
    • (2015) IEEE/ACM Trans Comput Biol Bioinform , vol.12 , Issue.1 , pp. 103-112
    • Spencer, M.1    Eickholt, J.2    Cheng, J.3
  • 61
    • 85000843987 scopus 로고    scopus 로고
    • Deepqa: improving the estimation of single protein model quality with deep belief networks
    • Cao R, Bhattacharya D, Hou J, Cheng J. Deepqa: improving the estimation of single protein model quality with deep belief networks. BMC Bioinformatics. 2016; 17(1):495.
    • (2016) BMC Bioinformatics , vol.17 , Issue.1 , pp. 495
    • Cao, R.1    Bhattacharya, D.2    Hou, J.3    Cheng, J.4
  • 62
    • 85018959942 scopus 로고    scopus 로고
    • RaptorX-Property: a web server for protein structure property prediction
    • Wang S, Li W, Liu S, Xu J. RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res. 2016; 44(W1):W430-5.
    • (2016) Nucleic Acids Res , vol.44 , Issue.W1 , pp. W430-W435
    • Wang, S.1    Li, W.2    Liu, S.3    Xu, J.4
  • 63
    • 84949267267 scopus 로고    scopus 로고
    • Improving protein fold recognition by deep learning networks
    • Jo T, Hou J, Eickholt J, Cheng J. Improving protein fold recognition by deep learning networks. Sci Rep. 2015; 5:17573.
    • (2015) Sci Rep , vol.5 , pp. 17573
    • Jo, T.1    Hou, J.2    Eickholt, J.3    Cheng, J.4
  • 64
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015; 12(10):931-4.
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 65
    • 84928997067 scopus 로고    scopus 로고
    • DANN: a deep learning approach for annotating the pathogenicity of genetic variants
    • Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015; 31(5):761-3.
    • (2015) Bioinformatics , vol.31 , Issue.5 , pp. 761-763
    • Quang, D.1    Chen, Y.2    Xie, X.3
  • 66
    • 84976908652 scopus 로고    scopus 로고
    • Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 2016; 26(7):990-9.
    • (2016) Genome Res , vol.26 , Issue.7 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 67
    • 84961714889 scopus 로고    scopus 로고
    • SD-MSAEs: promoter recognition in human genome based on deep feature extraction
    • Xu W, Zhang L, Lu Y. SD-MSAEs: promoter recognition in human genome based on deep feature extraction. J Biomed Inform. 2016; 61:55-62.
    • (2016) J Biomed Inform , vol.61 , pp. 55-62
    • Xu, W.1    Zhang, L.2    Lu, Y.3
  • 68
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of genetic complexity across 5,700 gene expression traits in yeast
    • Brem RB, Kruglyak L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA. 2005; 102(5):1572-7.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.5 , pp. 1572-1577
    • Brem, R.B.1    Kruglyak, L.2
  • 71
    • 0003465475 scopus 로고
    • Learning internal representations by error propagation
    • California Univ San Diego La Jolla Inst for Cognitive Science
    • Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science; 1985.
    • (1985)
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 73
    • 84906979661 scopus 로고    scopus 로고
    • Generating sequences with recurrent neural networks
    • arXiv preprint arXiv:1308.0850
    • Graves A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850. 2013.
    • (2013)
    • Graves, A.1
  • 74
    • 84904687441 scopus 로고    scopus 로고
    • Sparse autoencoder
    • Ng A. Sparse autoencoder. CS294A Lect Notes. 2011; 72(2011):1-19.
    • (2011) CS294A Lect Notes , vol.72 , Issue.2011 , pp. 1-19
    • Ng, A.1
  • 75
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec
    • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010; 11(Dec):3371-408.
    • (2010) J Mach Learn Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 79
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • Lin Y, Jeon Y. Random forests and adaptive nearest neighbors. J Am Stat Assoc. 2006; 101(474):578-90.
    • (2006) J Am Stat Assoc , vol.101 , Issue.474 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 80
    • 84896724814 scopus 로고    scopus 로고
    • Genetics of single-cell protein abundance variation in large yeast populations
    • Albert FW, Treusch S, Shockley AH, Bloom JS, Kruglyak L. Genetics of single-cell protein abundance variation in large yeast populations. Nature. 2014; 506(7489):494-7.
    • (2014) Nature , vol.506 , Issue.7489 , pp. 494-497
    • Albert, F.W.1    Treusch, S.2    Shockley, A.H.3    Bloom, J.S.4    Kruglyak, L.5
  • 82
    • 84859959092 scopus 로고    scopus 로고
    • Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation
    • Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, Schadt EE. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol. 2012; 10(4):e1001301.
    • (2012) PLoS Biol , vol.10 , Issue.4
    • Zhu, J.1    Sova, P.2    Xu, Q.3    Dombek, K.M.4    Xu, E.Y.5    Vu, H.6    Tu, Z.7    Brem, R.B.8    Bumgarner, R.E.9    Schadt, E.E.10
  • 84
    • 84905454828 scopus 로고    scopus 로고
    • Evolution and genetic architecture of chromatin accessibility and function in yeast
    • Connelly CF, Wakefield J, Akey JM. Evolution and genetic architecture of chromatin accessibility and function in yeast. PLoS Genet. 2014; 10(7):e1004427.
    • (2014) PLoS Genet , vol.10 , Issue.7
    • Connelly, C.F.1    Wakefield, J.2    Akey, J.M.3
  • 86
    • 85014072811 scopus 로고    scopus 로고
    • Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast
    • Forsberg SK, Bloom JS, Sadhu MJ, Kruglyak L, Carlborg Ö. Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast. Nat Genet. 2017; 49(4):497-503.
    • (2017) Nat Genet , vol.49 , Issue.4 , pp. 497-503
    • Forsberg, S.K.1    Bloom, J.S.2    Sadhu, M.J.3    Kruglyak, L.4    Carlborg, O.5
  • 87
    • 84946594666 scopus 로고    scopus 로고
    • Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
    • Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L. Genetic interactions contribute less than additive effects to quantitative trait variation in yeast. Nat Commun. 2015; 6:8712.
    • (2015) Nat Commun , vol.6 , pp. 8712
    • Bloom, J.S.1    Kotenko, I.2    Sadhu, M.J.3    Treusch, S.4    Albert, F.W.5    Kruglyak, L.6
  • 88
    • 84929001104 scopus 로고    scopus 로고
    • The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans
    • The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015; 348(6235):648-60.
    • (2015) Science , vol.348 , Issue.6235 , pp. 648-660
  • 89
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton G. A practical guide to training restricted boltzmann machines. Momentum. 2010; 9(1):926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.