메뉴 건너뛰기




Volumn 19, Issue 1, 2018, Pages

Genome-wide prediction of cis-regulatory regions using supervised deep learning methods

Author keywords

cis regulatory region; Deep learning; Enhancer; Promoter

Indexed keywords

CELL CULTURE; DNA; DNA SEQUENCES; MAMMALS; THROUGHPUT; TRANSCRIPTION;

EID: 85047942208     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-018-2187-1     Document Type: Article
Times cited : (85)

References (74)
  • 2
    • 84899450857 scopus 로고    scopus 로고
    • Transcriptional enhancers: From properties to genome-wide predictions
    • Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: From properties to genome-wide predictions. Nat Rev Genet. 2014; 15:272-86.
    • (2014) Nat Rev Genet , vol.15 , pp. 272-286
    • Shlyueva, D.1    Stampfel, G.2    Stark, A.3
  • 3
    • 84938287359 scopus 로고    scopus 로고
    • A unified architecture of transcriptional regulatory elements
    • Andersson R, Sandelin A, Danko CG. A unified architecture of transcriptional regulatory elements. Trends Genet. 2015; 31(8):426-33.
    • (2015) Trends Genet , vol.31 , Issue.8 , pp. 426-433
    • Andersson, R.1    Sandelin, A.2    Danko, C.G.3
  • 5
    • 84927559450 scopus 로고    scopus 로고
    • Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers
    • Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet. 2014; 46(12):1311-20.
    • (2014) Nat Genet , vol.46 , Issue.12 , pp. 1311-1320
    • Core, L.J.1    Martins, A.L.2    Danko, C.G.3    Waters, C.T.4    Siepel, A.5    Lis, J.T.6
  • 6
    • 1842584947 scopus 로고    scopus 로고
    • Applied bioinformatics for the identification of regulatory elements
    • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet. 2004; 5(4):276-87.
    • (2004) Nat Rev Genet , vol.5 , Issue.4 , pp. 276-287
    • Wasserman, W.W.1    Sandelin, A.2
  • 7
    • 84959350566 scopus 로고    scopus 로고
    • The identification of cis-regulatory elements: A review from a machine learning perspective
    • Li Y, Chen C, Kaye AM, Wasserman WW. The identification of cis-regulatory elements: A review from a machine learning perspective. BioSystems. 2015; 138:6-17.
    • (2015) BioSystems , vol.138 , pp. 6-17
    • Li, Y.1    Chen, C.2    Kaye, A.M.3    Wasserman, W.W.4
  • 8
    • 84857707318 scopus 로고    scopus 로고
    • ChromHMM: Automating chromatin-state discovery and characterization
    • Ernst J, Kellis M. ChromHMM: Automating chromatin-state discovery and characterization. Nat Methods. 2012; 9(3):215-6.
    • (2012) Nat Methods , vol.9 , Issue.3 , pp. 215-216
    • Ernst, J.1    Kellis, M.2
  • 9
    • 84862785201 scopus 로고    scopus 로고
    • Unsupervised pattern discovery in human chromatin structure through genomic segmentation
    • Hoffman MM, Buske OJ, Wang J, Weng Z, Bilmes JA, Nobel WS. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods. 2012; 9(5):473-6.
    • (2012) Nat Methods , vol.9 , Issue.5 , pp. 473-476
    • Hoffman, M.M.1    Buske, O.J.2    Wang, J.3    Weng, Z.4    Bilmes, J.A.5    Nobel, W.S.6
  • 10
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
  • 11
    • 34250159524 scopus 로고    scopus 로고
    • Genome-wide mapping of in vivo protein-DNA interactions
    • Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007; 316(5830):447-55.
    • (2007) Science , vol.316 , Issue.5830 , pp. 447-455
    • Johnson, D.S.1    Mortazavi, A.2    Myers, R.M.3    Wold, B.4
  • 13
    • 84869853147 scopus 로고    scopus 로고
    • Complex effects of nucleotide variants in a mammalian cis-regulatory element
    • Kwasnieski JC, Mogno I, Myers CA, Corbo JC, Cohen BA. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc Natl Acad Sci. 2012; 109(27):19498-503.
    • (2012) Proc Natl Acad Sci , vol.109 , Issue.27 , pp. 19498-19503
    • Kwasnieski, J.C.1    Mogno, I.2    Myers, C.A.3    Corbo, J.C.4    Cohen, B.A.5
  • 14
    • 84907516453 scopus 로고    scopus 로고
    • High-throughput functional testing of ENCODE segmentation predictions
    • Kwasnieski JC, Fiore C, Chaudhari HG, Cohen BA. High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 2014; 24:1595-602.
    • (2014) Genome Res , vol.24 , pp. 1595-1602
    • Kwasnieski, J.C.1    Fiore, C.2    Chaudhari, H.G.3    Cohen, B.A.4
  • 17
    • 84939175707 scopus 로고    scopus 로고
    • DELTA: A distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications
    • Lu Y, Qu W, Shan G, Zhang C. DELTA: A distal enhancer locating tool based on AdaBoost algorithm and shape features of chromatin modifications. PLoS ONE. 2015; 10(6):0130622.
    • (2015) PLoS ONE , vol.10 , Issue.6 , pp. 130622
    • Lu, Y.1    Qu, W.2    Shan, G.3    Zhang, C.4
  • 18
    • 84862163181 scopus 로고    scopus 로고
    • Enhancer identification in mouse embryonic stem cell using integrative modeling of chromatin and genomic features
    • Chen C, Morris Q, Mitchell JA. Enhancer identification in mouse embryonic stem cell using integrative modeling of chromatin and genomic features. BMC Genomics. 2012; 13:152.
    • (2012) BMC Genomics , vol.13 , pp. 152
    • Chen, C.1    Morris, Q.2    Mitchell, J.A.3
  • 19
    • 84874381107 scopus 로고    scopus 로고
    • Genome-wise quantitative enhancer activity maps identified by STARR-seq
    • Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. Genome-wise quantitative enhancer activity maps identified by STARR-seq. Science. 2013; 339:1074-7.
    • (2013) Science , vol.339 , pp. 1074-1077
    • Arnold, C.D.1    Gerlach, D.2    Stelzer, C.3    Boryn, L.M.4    Rath, M.5    Stark, A.6
  • 20
    • 84901804887 scopus 로고    scopus 로고
    • Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features
    • Yanez-Cuna JO, Arnold CD, Stampfel G, Boryn LM, Gerlach D, Rath M, Stark A. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res. 2014; 24:1147-56.
    • (2014) Genome Res , vol.24 , pp. 1147-1156
    • Yanez-Cuna, J.O.1    Arnold, C.D.2    Stampfel, G.3    Boryn, L.M.4    Gerlach, D.5    Rath, M.6    Stark, A.7
  • 21
    • 57849109058 scopus 로고    scopus 로고
    • Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters
    • Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008; 322:1845-8.
    • (2008) Science , vol.322 , pp. 1845-1848
    • Core, L.J.1    Waterfall, J.J.2    Lis, J.T.3
  • 24
    • 84897406127 scopus 로고    scopus 로고
    • A promoter-level mammalian expression atlas
    • The FANTOM Consortium, The RIKEN PMI, CLST (DGT). A promoter-level mammalian expression atlas. Nature. 2014; 507:462-70.
    • (2014) Nature , vol.507 , pp. 462-470
  • 25
    • 84943143082 scopus 로고    scopus 로고
    • DEEP: A general compuational framework for predicting enhancers
    • Kleftogiannis D, Kalnis P, Bajic VB. DEEP: A general compuational framework for predicting enhancers. Nucleic Acids Res. 2015; 43(1):6.
    • (2015) Nucleic Acids Res , vol.43 , Issue.1 , pp. 6
    • Kleftogiannis, D.1    Kalnis, P.2    Bajic, V.B.3
  • 26
    • 84969134763 scopus 로고    scopus 로고
    • Deep feature selection: Theory and application to identify enhancers and promoters
    • Li Y, Chen C, Wasserman WW. Deep feature selection: Theory and application to identify enhancers and promoters. J Comput Biol. 2016; 23(5):322-36.
    • (2016) J Comput Biol , vol.23 , Issue.5 , pp. 322-336
    • Li, Y.1    Chen, C.2    Wasserman, W.W.3
  • 27
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18:1527-54.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 28
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science. 2006; 313:504-7.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 32
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015; 12(10):931-4.
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 33
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanhi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015; 33(8):831-8.
    • (2015) Nat Biotechnol , vol.33 , Issue.8 , pp. 831-838
    • Alipanhi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 34
    • 84923265167 scopus 로고    scopus 로고
    • A deep learning network approach to ab initio protein secondary structure prediction
    • Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinforma. 2015; 12(1):103-12.
    • (2015) IEEE/ACM Trans Comput Biol Bioinforma , vol.12 , Issue.1 , pp. 103-112
    • Spencer, M.1    Eickholt, J.2    Cheng, J.3
  • 35
    • 84877147962 scopus 로고    scopus 로고
    • Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay
    • Kheradpour P, Ernst J, Mlenikov A, Rogov P, Wang L, Zhang X, Alston J, Mikkelsen TS, Kellis M. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 2013; 23(5):800-11.
    • (2013) Genome Res , vol.23 , Issue.5 , pp. 800-811
    • Kheradpour, P.1    Ernst, J.2    Mlenikov, A.3    Rogov, P.4    Wang, L.5    Zhang, X.6    Alston, J.7    Mikkelsen, T.S.8    Kellis, M.9
  • 36
    • 84883588081 scopus 로고    scopus 로고
    • kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets
    • Fletez-Brant C, Lee D, McCallion AS, Beer MA. kmer-SVM: A web server for identifying predictive regulatory sequence features in genomic data sets. Nucleic Acids Res. 2013; 41:544-6.
    • (2013) Nucleic Acids Res , vol.41 , pp. 544-546
    • Fletez-Brant, C.1    Lee, D.2    McCallion, A.S.3    Beer, M.A.4
  • 37
    • 84930607386 scopus 로고    scopus 로고
    • SeqGL identifies context-dependent binding signals in genome-wide regulatory element maps
    • Setty M, Leslie CS. SeqGL identifies context-dependent binding signals in genome-wide regulatory element maps. PLoS Comput Biol. 2015; 11(5):1004271.
    • (2015) PLoS Comput Biol , vol.11 , Issue.5 , pp. 1004271
    • Setty, M.1    Leslie, C.S.2
  • 38
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011; 25(10):1010-22.
    • (2011) Genes Dev , vol.25 , Issue.10 , pp. 1010-1022
    • Deaton, A.M.1    Bird, A.2
  • 39
    • 84898021970 scopus 로고    scopus 로고
    • H3K4me2 reliably defines transcription factor binding regions in different cells
    • Wang Y, Li X, Hua H. H3K4me2 reliably defines transcription factor binding regions in different cells. Genomics. 2014; 103(2-3):222-8.
    • (2014) Genomics , vol.103 , Issue.2-3 , pp. 222-228
    • Wang, Y.1    Li, X.2    Hua, H.3
  • 40
    • 78650304236 scopus 로고    scopus 로고
    • Charting histone modifications and the functional organization of mammalian genomes
    • Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011; 12:7-18.
    • (2011) Nat Rev Genet , vol.12 , pp. 7-18
    • Zhou, V.W.1    Goren, A.2    Bernstein, B.E.3
  • 41
    • 0031114483 scopus 로고    scopus 로고
    • GeneCards: Integrating information about genes, proteins and diseases
    • Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: Integrating information about genes, proteins and diseases. Trends Genet. 1997; 13(4):163.
    • (1997) Trends Genet , vol.13 , Issue.4 , pp. 163
    • Rebhan, M.1    Chalifa-Caspi, V.2    Prilusky, J.3    Lancet, D.4
  • 42
    • 84946415789 scopus 로고    scopus 로고
    • High-density P300 enhancers control cell state transitions
    • Witte S, Bradley A, Enright AJ, Muljo SA. High-density P300 enhancers control cell state transitions. BMC Genomics. 2015; 16:903.
    • (2015) BMC Genomics , vol.16 , pp. 903
    • Witte, S.1    Bradley, A.2    Enright, A.J.3    Muljo, S.A.4
  • 43
    • 33846112470 scopus 로고    scopus 로고
    • VISTA Enhancer Browser - a database of tissue-specific human enhancers
    • Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA Enhancer Browser - a database of tissue-specific human enhancers. Nucleic Acids Res. 2007; 35:88-92.
    • (2007) Nucleic Acids Res , vol.35 , pp. 88-92
    • Visel, A.1    Minovitsky, S.2    Dubchak, I.3    Pennacchio, L.A.4
  • 45
    • 77952567987 scopus 로고    scopus 로고
    • Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
    • Heinz S, Benner C, Spann N, Bertolino E, et al.Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4):576-89.
    • (2010) Mol Cell , vol.38 , Issue.4 , pp. 576-589
    • Heinz, S.1    Benner, C.2    Spann, N.3    Bertolino, E.4
  • 47
    • 0242606442 scopus 로고    scopus 로고
    • A role for AP-1 in apoptosis: The case for and against
    • Ameyar M, Wisniewska M, Weitzman JB. A role for AP-1 in apoptosis: The case for and against. Biochimie. 2003; 85(8):747-52.
    • (2003) Biochimie , vol.85 , Issue.8 , pp. 747-752
    • Ameyar, M.1    Wisniewska, M.2    Weitzman, J.B.3
  • 48
    • 0035515347 scopus 로고    scopus 로고
    • The ETS-domain transcription factor family
    • Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001; 2(11):827-37.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , Issue.11 , pp. 827-837
    • Sharrocks, A.D.1
  • 49
    • 0035490631 scopus 로고    scopus 로고
    • RUNX1/AML1: A central player in hematopoiesis
    • Okuda T, Nishimura M, Nakao M, Fujita Y. RUNX1/AML1: A central player in hematopoiesis. Int J Hematol. 2001; 74(3):252-7.
    • (2001) Int J Hematol , vol.74 , Issue.3 , pp. 252-257
    • Okuda, T.1    Nishimura, M.2    Nakao, M.3    Fujita, Y.4
  • 50
    • 19644400514 scopus 로고    scopus 로고
    • Expression of CAAT enhancer binding protein beta (C/EBP beta) in cervix and endometrium
    • Arnett B, Soisson P, Ducatman BS, Zhang P. Expression of CAAT enhancer binding protein beta (C/EBP beta) in cervix and endometrium. Mol Cancer. 2003; 2:21.
    • (2003) Mol Cancer , vol.2 , pp. 21
    • Arnett, B.1    Soisson, P.2    Ducatman, B.S.3    Zhang, P.4
  • 51
    • 0345017786 scopus 로고    scopus 로고
    • Transcription factors in liver development, differentiation, and regeneration
    • Costa RH, Kalinichenko VV, Holterman AX, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology. 2003; 38(6):1331-47.
    • (2003) Hepatology , vol.38 , Issue.6 , pp. 1331-1347
    • Costa, R.H.1    Kalinichenko, V.V.2    Holterman, A.X.3    Wang, X.4
  • 52
    • 79951952676 scopus 로고    scopus 로고
    • Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4 α
    • Wang Z, Bishop EP, Burke PA. Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4 α. BMC Genomics. 2011; 12:128.
    • (2011) BMC Genomics , vol.12 , pp. 128
    • Wang, Z.1    Bishop, E.P.2    Burke, P.A.3
  • 53
    • 84881168849 scopus 로고    scopus 로고
    • NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors
    • Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R, Struhl K. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Res. 2013; 23(8):1195-209.
    • (2013) Genome Res , vol.23 , Issue.8 , pp. 1195-1209
    • Fleming, J.D.1    Pavesi, G.2    Benatti, P.3    Imbriano, C.4    Mantovani, R.5    Struhl, K.6
  • 54
    • 85047929199 scopus 로고    scopus 로고
    • DREAM Challenges. http://dreamchallenges.org.
  • 55
    • 85021826017 scopus 로고    scopus 로고
    • BiRen: Predicting enhancers with a deep-learning-based model using the DNA sequence alone
    • Yang B, Liu F, Ren C, Ouyang Z, Xie Z, Bo X, Shu W. BiRen: Predicting enhancers with a deep-learning-based model using the DNA sequence alone. Bioinformatics. 2017; 33(13):1930-6.
    • (2017) Bioinformatics , vol.33 , Issue.13 , pp. 1930-1936
    • Yang, B.1    Liu, F.2    Ren, C.3    Ouyang, Z.4    Xie, Z.5    Bo, X.6    Shu, W.7
  • 56
    • 84960077322 scopus 로고    scopus 로고
    • De novo identification of replication-timing domains in the human genome by deep learning
    • Liu F, Ren C, Li H, Zhou P, Bo X, Shu W. De novo identification of replication-timing domains in the human genome by deep learning. Bioinformatics. 2016; 32(5):641-9.
    • (2016) Bioinformatics , vol.32 , Issue.5 , pp. 641-649
    • Liu, F.1    Ren, C.2    Li, H.3    Zhou, P.4    Bo, X.5    Shu, W.6
  • 57
    • 84975746111 scopus 로고    scopus 로고
    • PEDLA predicting enhancers with a deep learning-based algorithmic framework
    • Liu F, Ren C, Bo X, Shu W. PEDLA predicting enhancers with a deep learning-based algorithmic framework. Sci Rep. 2016; 6:28517.
    • (2016) Sci Rep , vol.6 , pp. 28517
    • Liu, F.1    Ren, C.2    Bo, X.3    Shu, W.4
  • 58
    • 84940560152 scopus 로고    scopus 로고
    • On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
    • Bach S, Binder A, Montavon G, Klauschen F, Muller K-R, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE. 2015; 10(7):0130140.
    • (2015) PLoS ONE , vol.10 , Issue.7
    • Bach, S.1    Binder, A.2    Montavon, G.3    Klauschen, F.4    Muller, K.-R.5    Samek, W.6
  • 59
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps.
    • Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps. In: International Conference on Learning Representations Workshop.2014. https://iclr.cc/archive/2014/workshop-proceedings.
    • (2014) Conference on Learning Representations Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 60
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan S. J, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010; 22(10):1345-59.
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 61
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the regulatory code of the accessible genome wide deep convolutional neural networks
    • Kelley DR, Snoek J, Rinn JL. Basset: Learning the regulatory code of the accessible genome wide deep convolutional neural networks. Genome Res. 2016; 26:990-9.
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 62
    • 84878682420 scopus 로고    scopus 로고
    • The genotype-tissue expression (GTEx) project
    • GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013; 45(6):580-5.
    • (2013) Nat Genet , vol.45 , Issue.6 , pp. 580-585
  • 63
    • 85049474548 scopus 로고    scopus 로고
    • A review on machine learning principles for multi-view biological data integration
    • Li Y, Wu FX, Ngom A. A review on machine learning principles for multi-view biological data integration. Brief Bioinforma. 2018; 19(2):325-40.
    • (2018) Brief Bioinforma , vol.19 , Issue.2 , pp. 325-340
    • Li, Y.1    Wu, F.X.2    Ngom, A.3
  • 64
    • 85028411342 scopus 로고    scopus 로고
    • FIDDLE: An integrative deep learning framework for functional genomic data inference
    • Eser U, Churchman L. S. FIDDLE: An integrative deep learning framework for functional genomic data inference. bioRxiv. https://doi.org/10.1101/081380.
    • bioRxiv
    • Eser, U.1    Churchman, L.S.2
  • 65
    • 85047923217 scopus 로고    scopus 로고
    • FANTOM, 5 Data. http://fantom.gsc.riken.jp/5/data.
  • 66
    • 85047933876 scopus 로고    scopus 로고
    • ENCODE Data. ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/ encodeDCC.
  • 67
    • 85047910289 scopus 로고    scopus 로고
    • ENCODE Fold-Change Data. https://sites.google.com/site/anshulkundaje.
  • 68
    • 84901358543 scopus 로고    scopus 로고
    • bwtool: A tool for bigWig files
    • Pohl A, Beato M. bwtool: A tool for bigWig files. Bioinformatics. 2014; 30(11):1618-9.
    • (2014) Bioinformatics , vol.30 , Issue.11 , pp. 1618-1619
    • Pohl, A.1    Beato, M.2
  • 70
    • 85047938458 scopus 로고    scopus 로고
    • Deep Learning Tutorials. http://deeplearning.net/tutorial.
  • 71
    • 85047921668 scopus 로고    scopus 로고
    • Theano. http://deeplearning.net/software/theano.
  • 72
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines. In: International Conference on Machine Learning (ICML)
    • Nair V, Hinton G. Rectified linear units improve restricted Boltzmann machines. In: International Conference on Machine Learning (ICML).2010. p. 807-14.
    • (2010) , pp. 807-814
    • Nair, V.1    Hinton, G.2
  • 73
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001; 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.