-
1
-
-
84980022857
-
Deep learning for computational biology
-
Angermueller, C., Parnamaa, T., Parts, L. and Stegle, O. (2016) Deep learning for computational biology. Mol. Syst. Biol., 12, 878
-
(2016)
Mol. Syst. Biol
, vol.12
, pp. 878
-
-
Angermueller, C.1
Parnamaa, T.2
Parts, L.3
Stegle, O.4
-
2
-
-
85032037004
-
Opportunities and obstacles for deep learning in biology and medicine
-
Ching, T., Himmelstein, D.S., Beaulieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., Ferrero, E., Agapow, P.-M., Xie, W., Rosen, G.L. et al. (2017) Opportunities and obstacles for deep learning in biology and medicine. bioRxiv, 142760, doi: https://doi.org/10.1101/142760
-
(2017)
bioRxiv
-
-
Ching, T.1
Himmelstein, D.S.2
Beaulieu-Jones, B.K.3
Kalinin, A.A.4
Do, B.T.5
Way, G.P.6
Ferrero, E.7
Agapow, P.-M.8
Xie, W.9
Rosen, G.L.10
-
3
-
-
84981484661
-
A short review of deep learning neural networks in protein structure prediction problems
-
Paliwal, K., Lyons, J. and Heffernan, R. (2015) A short review of deep learning neural networks in protein structure prediction problems. Adv. Tech. Biol. Med., 3, 139
-
(2015)
Adv. Tech. Biol. Med
, vol.3
, pp. 139
-
-
Paliwal, K.1
Lyons, J.2
Heffernan, R.3
-
4
-
-
85011370897
-
Accurate de novo prediction of protein contact map by ultra-deep learning model
-
Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324
-
(2017)
PLoS Comput. Biol
, vol.13
-
-
Wang, S.1
Sun, S.2
Li, Z.3
Zhang, R.4
Xu, J.5
-
5
-
-
84982253941
-
Analysis of protein-coding genetic variation in 60, 706 humans
-
Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B. et al. (2016) Analysis of protein-coding genetic variation in 60, 706 humans. Nature, 536, 285-291
-
(2016)
Nature
, vol.536
, pp. 285-291
-
-
Lek, M.1
Karczewski, K.J.2
Minikel, E.V.3
Samocha, K.E.4
Banks, E.5
Fennell, T.6
O'Donnell-Luria, A.H.7
Ware, J.S.8
Hill, A.J.9
Cummings, B.B.10
-
6
-
-
84991628639
-
Deep sequencing of 10, 000 human genomes
-
Telenti, A., Pierce, L.C., Biggs, W.H., di Iulio, J., Wong, E.H., Fabani, M.M., Kirkness, E.F., Moustafa, A., Shah, N., Xie, C. et al. (2016) Deep sequencing of 10, 000 human genomes. Proc. Natl. Acad. Sci. U. S. A., 113, 11901-11906
-
(2016)
Proc. Natl. Acad. Sci. U. S. A
, vol.113
, pp. 11901-11906
-
-
Telenti, A.1
Pierce, L.C.2
Biggs, W.H.3
di Iulio, J.4
Wong, E.H.5
Fabani, M.M.6
Kirkness, E.F.7
Moustafa, A.8
Shah, N.9
Xie, C.10
-
7
-
-
84958093480
-
An expanded sequence context model broadly explains variability in polymorphism levels across the human genome
-
Aggarwala, V. and Voight, B.F. (2016) An expanded sequence context model broadly explains variability in polymorphism levels across the human genome. Nat. Genet., 48, 349-355
-
(2016)
Nat. Genet
, vol.48
, pp. 349-355
-
-
Aggarwala, V.1
Voight, B.F.2
-
8
-
-
85042536433
-
The human non-coding genome defined by genetic diversity
-
di Iulio, J., Bartha, I., Wong, E.H.M., Yu, H.-C., Hicks, M.A., Shah, N., Lavrenko, V., Kirkness, E.F., Fabani, M.M., Yang, D. et al. (2018) The human non-coding genome defined by genetic diversity. Nat. Genet., 50, 333-337
-
(2018)
Nat. Genet
, vol.50
, pp. 333-337
-
-
di Iulio, J.1
Bartha, I.2
Wong, E.H.M.3
Yu, H.-C.4
Hicks, M.A.5
Shah, N.6
Lavrenko, V.7
Kirkness, E.F.8
Fabani, M.M.9
Yang, D.10
-
9
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
Consortium, E.P. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
Consortium, E.P.1
-
10
-
-
85017008531
-
Estimating the selective effects of heterozygous protein-truncating variants from human exome data
-
Cassa, C.A., Weghorn, D., Balick, D.J., Jordan, D.M., Nusinow, D., Samocha, K.E., O'Donnell-Luria, A., MacArthur, D.G., Daly, M.J., Beier, D.R. et al. (2017) Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nat. Genet., 49, 806-810
-
(2017)
Nat. Genet
, vol.49
, pp. 806-810
-
-
Cassa, C.A.1
Weghorn, D.2
Balick, D.J.3
Jordan, D.M.4
Nusinow, D.5
Samocha, K.E.6
O'Donnell-Luria, A.7
MacArthur, D.G.8
Daly, M.J.9
Beier, D.R.10
-
11
-
-
84895858942
-
A general framework for estimating the relative pathogenicity of human genetic variants
-
Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310-315
-
(2014)
Nat. Genet
, vol.46
, pp. 310-315
-
-
Kircher, M.1
Witten, D.M.2
Jain, P.3
O'Roak, B.J.4
Cooper, G.M.5
Shendure, J.6
-
12
-
-
85038372178
-
Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework
-
Glusman, G., Rose, P.W., Prlic, A., Dougherty, J., Duarte, J.M., Hoffman, A.S., Barton, G.J., Bendixen, E., Bergquist, T., Bock, C. et al. (2017) Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework. Genome Med., 9, 113
-
(2017)
Genome Med
, vol.9
, pp. 113
-
-
Glusman, G.1
Rose, P.W.2
Prlic, A.3
Dougherty, J.4
Duarte, J.M.5
Hoffman, A.S.6
Barton, G.J.7
Bendixen, E.8
Bergquist, T.9
Bock, C.10
-
13
-
-
85048611649
-
Functional characterization of 3D-protein structures informed by human genetic diversity
-
Hicks, M., Bartha, I., di Iulio, J., Abagyan, R., Venter, J.C. and Telenti, A. (2017) Functional characterization of 3D-protein structures informed by human genetic diversity. bioRxiv, 182287; doi: https://doi.org/10.1101/182287
-
(2017)
BioRxiv
-
-
Hicks, M.1
Bartha, I.2
di Iulio, J.3
Abagyan, R.4
Venter, J.C.5
Telenti, A.6
-
14
-
-
84956688641
-
A spectral approach integrating functional genomic annotations for coding and noncoding variants
-
Ionita-Laza, I., McCallum, K., Xu, B. and Buxbaum, J.D. (2016) A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet., 48, 214-220
-
(2016)
Nat. Genet
, vol.48
, pp. 214-220
-
-
Ionita-Laza, I.1
McCallum, K.2
Xu, B.3
Buxbaum, J.D.4
-
15
-
-
84964696143
-
FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer
-
Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X.J., Yip, K.Y., Khurana, E. and Gerstein, M. (2014) FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol., 15, 480
-
(2014)
Genome Biol
, vol.15
, pp. 480
-
-
Fu, Y.1
Liu, Z.2
Lou, S.3
Bedford, J.4
Mu, X.J.5
Yip, K.Y.6
Khurana, E.7
Gerstein, M.8
-
16
-
-
85015007138
-
Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data
-
Huang, Y.F., Gulko, B. and Siepel, A. (2017) Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nat. Genet., 49, 618-624
-
(2017)
Nat. Genet
, vol.49
, pp. 618-624
-
-
Huang, Y.F.1
Gulko, B.2
Siepel, A.3
-
17
-
-
84929628542
-
An integrative approach to predicting the functional effects of non-coding and coding sequence variation
-
Shihab, H.A., Rogers, M.F., Gough, J., Mort, M., Cooper, D.N., Day, I.N., Gaunt, T.R. and Campbell, C. (2015) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics, 31, 1536-1543
-
(2015)
Bioinformatics
, vol.31
, pp. 1536-1543
-
-
Shihab, H.A.1
Rogers, M.F.2
Gough, J.3
Mort, M.4
Cooper, D.N.5
Day, I.N.6
Gaunt, T.R.7
Campbell, C.8
-
18
-
-
85002624508
-
A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease
-
Smedley, D., Schubach, M., Jacobsen, J.O.B., Kohler, S., Zemojtel, T., Spielmann, M., Jager, M., Hochheiser, H., Washington, N.L., McMurry, J.A. et al. (2016) A whole-genome analysis framework for effective identification of pathogenic regulatory variants in Mendelian disease. Am. J. Hum. Genet., 99, 595-606
-
(2016)
Am. J. Hum. Genet
, vol.99
, pp. 595-606
-
-
Smedley, D.1
Schubach, M.2
Jacobsen, J.O.B.3
Kohler, S.4
Zemojtel, T.5
Spielmann, M.6
Jager, M.7
Hochheiser, H.8
Washington, N.L.9
McMurry, J.A.10
-
19
-
-
85027239513
-
Orion: detecting regions of the human non-coding genome that are intolerant to variation using population genetics
-
Gussow, A.B., Copeland, B.R., Dhindsa, R.S., Wang, Q., Petrovski, S., Majoros, W.H., Allen, A.S. and Goldstein, D.B. (2017) Orion: detecting regions of the human non-coding genome that are intolerant to variation using population genetics. PLoS One, 12, e0181604
-
(2017)
PLoS One
, vol.12
-
-
Gussow, A.B.1
Copeland, B.R.2
Dhindsa, R.S.3
Wang, Q.4
Petrovski, S.5
Majoros, W.H.6
Allen, A.S.7
Goldstein, D.B.8
-
20
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934
-
(2015)
Nat. Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
21
-
-
85011416878
-
Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
-
So, H.C. and Sham, P.C. (2017) Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep., 7, 41262
-
(2017)
Sci. Rep
, vol.7
-
-
So, H.C.1
Sham, P.C.2
-
22
-
-
85030656412
-
A machine-learning heuristic to improve gene score prediction of polygenic traits
-
Pare, G., Mao, S. and Deng, W.Q. (2017) A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep., 7, 12665
-
(2017)
Sci. Rep
, vol.7
-
-
Pare, G.1
Mao, S.2
Deng, W.Q.3
-
23
-
-
85024497415
-
Creating a universal SNP and small indel variant caller with deep neural networks
-
Poplin, R., Newburger, D., Dijamco, J., Nguyen, N., Loy, D., Gross, S.S., McLean, C.Y. and DePristo, M.A. (2017) Creating a universal SNP and small indel variant caller with deep neural networks. bioRxiv, 092890, doi: https://doi.org/10.1101/092890
-
(2017)
bioRxiv
-
-
Poplin, R.1
Newburger, D.2
Dijamco, J.3
Nguyen, N.4
Loy, D.5
Gross, S.S.6
McLean, C.Y.7
DePristo, M.A.8
-
24
-
-
79955483667
-
A framework for variation discovery and genotyping using next-generation DNA sequencing data
-
DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M. et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491-498
-
(2011)
Nat. Genet
, vol.43
, pp. 491-498
-
-
DePristo, M.A.1
Banks, E.2
Poplin, R.3
Garimella, K.V.4
Maguire, J.R.5
Hartl, C.6
Philippakis, A.A.7
del Angel, G.8
Rivas, M.A.9
Hanna, M.10
-
25
-
-
84913546864
-
Toward better understanding of artifacts in variant calling from high-coverage samples
-
Li, H. (2014) Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30, 2843-2851
-
(2014)
Bioinformatics
, vol.30
, pp. 2843-2851
-
-
Li, H.1
-
26
-
-
84959324684
-
Medical implications of technical accuracy in genome sequencing
-
Goldfeder, R.L., Priest, J.R., Zook, J.M., Grove, M.E., Waggott, D., Wheeler, M.T., Salit, M. and Ashley, E.A. (2016) Medical implications of technical accuracy in genome sequencing. Genome Med., 8, 24
-
(2016)
Genome Med
, vol.8
, pp. 24
-
-
Goldfeder, R.L.1
Priest, J.R.2
Zook, J.M.3
Grove, M.E.4
Waggott, D.5
Wheeler, M.T.6
Salit, M.7
Ashley, E.A.8
-
27
-
-
85025631302
-
Fast and accurate HLA typing from short-read next-generation sequence data with xHLA
-
Xie, C., Yeo, Z.X., Wong, M., Piper, J., Long, T., Kirkness, E.F., Biggs, W.H., Bloom, K., Spellman, S., Vierra-Green, C. et al. (2017) Fast and accurate HLA typing from short-read next-generation sequence data with xHLA. Proc. Natl. Acad. Sci. U. S. A., 114, 8059-8064
-
(2017)
Proc. Natl. Acad. Sci. U. S. A
, vol.114
, pp. 8059-8064
-
-
Xie, C.1
Yeo, Z.X.2
Wong, M.3
Piper, J.4
Long, T.5
Kirkness, E.F.6
Biggs, W.H.7
Bloom, K.8
Spellman, S.9
Vierra-Green, C.10
-
28
-
-
85033602949
-
Profiling of short-tandem-repeat disease alleles in 12, 632 human whole genomes
-
Tang, H., Kirkness, E.F., Lippert, C., Biggs, W.H., Fabani, M., Guzman, E., Ramakrishnan, S., Lavrenko, V., Kakaradov, B., Hou, C. et al. (2017) Profiling of short-tandem-repeat disease alleles in 12, 632 human whole genomes. Am. J. Hum. Genet., 101, 700-715
-
(2017)
Am. J. Hum. Genet
, vol.101
, pp. 700-715
-
-
Tang, H.1
Kirkness, E.F.2
Lippert, C.3
Biggs, W.H.4
Fabani, M.5
Guzman, E.6
Ramakrishnan, S.7
Lavrenko, V.8
Kakaradov, B.9
Hou, C.10
-
29
-
-
84861861291
-
lobSTR: a short tandem repeat profiler for personal genomes
-
Gymrek, M., Golan, D., Rosset, S. and Erlich, Y. (2012) lobSTR: a short tandem repeat profiler for personal genomes. Genome Res., 22, 1154-1162
-
(2012)
Genome Res
, vol.22
, pp. 1154-1162
-
-
Gymrek, M.1
Golan, D.2
Rosset, S.3
Erlich, Y.4
-
30
-
-
85029567036
-
Identification of individuals by trait prediction using whole-genome sequencing data
-
Lippert, C., Sabatini, R., Maher, M.C., Kang, E.Y., Lee, S., Arikan, O., Harley, A., Bernal, A., Garst, P., Lavrenko, V. et al. (2017) Identification of individuals by trait prediction using whole-genome sequencing data. Proc. Natl. Acad. Sci. U. S. A., 114, 10166-10171
-
(2017)
Proc. Natl. Acad. Sci. U. S. A
, vol.114
, pp. 10166-10171
-
-
Lippert, C.1
Sabatini, R.2
Maher, M.C.3
Kang, E.Y.4
Lee, S.5
Arikan, O.6
Harley, A.7
Bernal, A.8
Garst, P.9
Lavrenko, V.10
-
31
-
-
84934759833
-
Assessing structural variation in a personal genome-towards a human reference diploid genome
-
English, A.C., Salerno, W.J., Hampton, O.A., Gonzaga-Jauregui, C., Ambreth, S., Ritter, D.I., Beck, C.R., Davis, C.F., Dahdouli, M., Ma, S. et al. (2015) Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genomics, 16, 286
-
(2015)
BMC Genomics
, vol.16
, pp. 286
-
-
English, A.C.1
Salerno, W.J.2
Hampton, O.A.3
Gonzaga-Jauregui, C.4
Ambreth, S.5
Ritter, D.I.6
Beck, C.R.7
Davis, C.F.8
Dahdouli, M.9
Ma, S.10
-
32
-
-
84941749763
-
Making the difference: integrating structural variation detection tools
-
Lin, K., Smit, S., Bonnema, G., Sanchez-Perez, G. and de Ridder, D. (2015) Making the difference: integrating structural variation detection tools. Brief Bioinform., 16, 852-864
-
(2015)
Brief Bioinform
, vol.16
, pp. 852-864
-
-
Lin, K.1
Smit, S.2
Bonnema, G.3
Sanchez-Perez, G.4
de Ridder, D.5
-
33
-
-
85048632370
-
SV2: Accurate Structural Variation Genotyping and De Novo Mutation Detection
-
Antaki, D., Brandler, W.M. and Sebat, J. (2017) SV2: Accurate Structural Variation Genotyping and De Novo Mutation Detection. bioRxiv, 113498, doi: https://doi.org/10.1101/113498
-
(2017)
bioRxiv
-
-
Antaki, D.1
Brandler, W.M.2
Sebat, J.3
-
35
-
-
84905220041
-
Deep inside convolutional networks: visualising image classification models and saliency maps
-
Simonyan, K., Vedaldi, A. and Zisserman, A. (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv, 1312.6034v2
-
(2013)
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
38
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Alipanahi, B., Delong, A., Weirauch, M.T. and Frey, B.J. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838
-
(2015)
Nat. Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
40
-
-
85014167143
-
Imputation for transcription factor binding predictions based on deep learning
-
Qin, Q. and Feng, J. (2017) Imputation for transcription factor binding predictions based on deep learning. PLoS Comput. Biol., 13, e1005403
-
(2017)
PLoS Comput. Biol
, vol.13
-
-
Qin, Q.1
Feng, J.2
-
41
-
-
85020469555
-
DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads
-
Boza, V., Brejova, B. and Vinar, T. (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 12, e0178751
-
(2017)
PLoS One
, vol.12
-
-
Boza, V.1
Brejova, B.2
Vinar, T.3
-
42
-
-
85040786242
-
Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning
-
Teng, H., Hall, M.B., Duarte, T., Cao, M.D. and Coin, L. (2017) Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. bioRxiv, 179531, doi: https://doi.org/10.1101/179531
-
(2017)
bioRxiv
-
-
Teng, H.1
Hall, M.B.2
Duarte, T.3
Cao, M.D.4
Coin, L.5
-
43
-
-
85044299745
-
Computational biology: deep learning
-
Jones, W., Alasoo, K., Fishman, D. and Parts, L. (2017) Computational biology: deep learning. Emerg. Top. Life Sci., 1, 257-274
-
(2017)
Emerg. Top. Life Sci
, vol.1
, pp. 257-274
-
-
Jones, W.1
Alasoo, K.2
Fishman, D.3
Parts, L.4
|