메뉴 건너뛰기




Volumn 27, Issue R1, 2018, Pages R63-R71

Deep learning of genomic variation and regulatory network data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; DATA ANALYSIS; EXOME; GENE REGULATORY NETWORK; GENETIC VARIATION; GENOME ANALYSIS; GENOMICS; HUMAN; HUMAN GENOME; MACHINE LEARNING; POPULATION GENETICS; PRIORITY JOURNAL; REVIEW; DNA SEQUENCE; GENETICS; HIGH THROUGHPUT SEQUENCING; SOFTWARE; TRENDS;

EID: 85048632046     PISSN: 09646906     EISSN: 14602083     Source Type: Journal    
DOI: 10.1093/hmg/ddy115     Document Type: Review
Times cited : (59)

References (43)
  • 3
    • 84981484661 scopus 로고    scopus 로고
    • A short review of deep learning neural networks in protein structure prediction problems
    • Paliwal, K., Lyons, J. and Heffernan, R. (2015) A short review of deep learning neural networks in protein structure prediction problems. Adv. Tech. Biol. Med., 3, 139
    • (2015) Adv. Tech. Biol. Med , vol.3 , pp. 139
    • Paliwal, K.1    Lyons, J.2    Heffernan, R.3
  • 4
    • 85011370897 scopus 로고    scopus 로고
    • Accurate de novo prediction of protein contact map by ultra-deep learning model
    • Wang, S., Sun, S., Li, Z., Zhang, R. and Xu, J. (2017) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol., 13, e1005324
    • (2017) PLoS Comput. Biol , vol.13
    • Wang, S.1    Sun, S.2    Li, Z.3    Zhang, R.4    Xu, J.5
  • 7
    • 84958093480 scopus 로고    scopus 로고
    • An expanded sequence context model broadly explains variability in polymorphism levels across the human genome
    • Aggarwala, V. and Voight, B.F. (2016) An expanded sequence context model broadly explains variability in polymorphism levels across the human genome. Nat. Genet., 48, 349-355
    • (2016) Nat. Genet , vol.48 , pp. 349-355
    • Aggarwala, V.1    Voight, B.F.2
  • 9
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Consortium, E.P. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74
    • (2012) Nature , vol.489 , pp. 57-74
    • Consortium, E.P.1
  • 11
    • 84895858942 scopus 로고    scopus 로고
    • A general framework for estimating the relative pathogenicity of human genetic variants
    • Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310-315
    • (2014) Nat. Genet , vol.46 , pp. 310-315
    • Kircher, M.1    Witten, D.M.2    Jain, P.3    O'Roak, B.J.4    Cooper, G.M.5    Shendure, J.6
  • 13
    • 85048611649 scopus 로고    scopus 로고
    • Functional characterization of 3D-protein structures informed by human genetic diversity
    • Hicks, M., Bartha, I., di Iulio, J., Abagyan, R., Venter, J.C. and Telenti, A. (2017) Functional characterization of 3D-protein structures informed by human genetic diversity. bioRxiv, 182287; doi: https://doi.org/10.1101/182287
    • (2017) BioRxiv
    • Hicks, M.1    Bartha, I.2    di Iulio, J.3    Abagyan, R.4    Venter, J.C.5    Telenti, A.6
  • 14
    • 84956688641 scopus 로고    scopus 로고
    • A spectral approach integrating functional genomic annotations for coding and noncoding variants
    • Ionita-Laza, I., McCallum, K., Xu, B. and Buxbaum, J.D. (2016) A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat. Genet., 48, 214-220
    • (2016) Nat. Genet , vol.48 , pp. 214-220
    • Ionita-Laza, I.1    McCallum, K.2    Xu, B.3    Buxbaum, J.D.4
  • 16
    • 85015007138 scopus 로고    scopus 로고
    • Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data
    • Huang, Y.F., Gulko, B. and Siepel, A. (2017) Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data. Nat. Genet., 49, 618-624
    • (2017) Nat. Genet , vol.49 , pp. 618-624
    • Huang, Y.F.1    Gulko, B.2    Siepel, A.3
  • 17
    • 84929628542 scopus 로고    scopus 로고
    • An integrative approach to predicting the functional effects of non-coding and coding sequence variation
    • Shihab, H.A., Rogers, M.F., Gough, J., Mort, M., Cooper, D.N., Day, I.N., Gaunt, T.R. and Campbell, C. (2015) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics, 31, 1536-1543
    • (2015) Bioinformatics , vol.31 , pp. 1536-1543
    • Shihab, H.A.1    Rogers, M.F.2    Gough, J.3    Mort, M.4    Cooper, D.N.5    Day, I.N.6    Gaunt, T.R.7    Campbell, C.8
  • 20
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 12, 931-934
    • (2015) Nat. Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 21
    • 85011416878 scopus 로고    scopus 로고
    • Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
    • So, H.C. and Sham, P.C. (2017) Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci. Rep., 7, 41262
    • (2017) Sci. Rep , vol.7
    • So, H.C.1    Sham, P.C.2
  • 22
    • 85030656412 scopus 로고    scopus 로고
    • A machine-learning heuristic to improve gene score prediction of polygenic traits
    • Pare, G., Mao, S. and Deng, W.Q. (2017) A machine-learning heuristic to improve gene score prediction of polygenic traits. Sci. Rep., 7, 12665
    • (2017) Sci. Rep , vol.7
    • Pare, G.1    Mao, S.2    Deng, W.Q.3
  • 25
    • 84913546864 scopus 로고    scopus 로고
    • Toward better understanding of artifacts in variant calling from high-coverage samples
    • Li, H. (2014) Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30, 2843-2851
    • (2014) Bioinformatics , vol.30 , pp. 2843-2851
    • Li, H.1
  • 29
    • 84861861291 scopus 로고    scopus 로고
    • lobSTR: a short tandem repeat profiler for personal genomes
    • Gymrek, M., Golan, D., Rosset, S. and Erlich, Y. (2012) lobSTR: a short tandem repeat profiler for personal genomes. Genome Res., 22, 1154-1162
    • (2012) Genome Res , vol.22 , pp. 1154-1162
    • Gymrek, M.1    Golan, D.2    Rosset, S.3    Erlich, Y.4
  • 32
    • 84941749763 scopus 로고    scopus 로고
    • Making the difference: integrating structural variation detection tools
    • Lin, K., Smit, S., Bonnema, G., Sanchez-Perez, G. and de Ridder, D. (2015) Making the difference: integrating structural variation detection tools. Brief Bioinform., 16, 852-864
    • (2015) Brief Bioinform , vol.16 , pp. 852-864
    • Lin, K.1    Smit, S.2    Bonnema, G.3    Sanchez-Perez, G.4    de Ridder, D.5
  • 33
    • 85048632370 scopus 로고    scopus 로고
    • SV2: Accurate Structural Variation Genotyping and De Novo Mutation Detection
    • Antaki, D., Brandler, W.M. and Sebat, J. (2017) SV2: Accurate Structural Variation Genotyping and De Novo Mutation Detection. bioRxiv, 113498, doi: https://doi.org/10.1101/113498
    • (2017) bioRxiv
    • Antaki, D.1    Brandler, W.M.2    Sebat, J.3
  • 35
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: visualising image classification models and saliency maps
    • Simonyan, K., Vedaldi, A. and Zisserman, A. (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv, 1312.6034v2
    • (2013)
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 38
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Alipanahi, B., Delong, A., Weirauch, M.T. and Frey, B.J. (2015) Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831-838
    • (2015) Nat. Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 40
    • 85014167143 scopus 로고    scopus 로고
    • Imputation for transcription factor binding predictions based on deep learning
    • Qin, Q. and Feng, J. (2017) Imputation for transcription factor binding predictions based on deep learning. PLoS Comput. Biol., 13, e1005403
    • (2017) PLoS Comput. Biol , vol.13
    • Qin, Q.1    Feng, J.2
  • 41
    • 85020469555 scopus 로고    scopus 로고
    • DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads
    • Boza, V., Brejova, B. and Vinar, T. (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 12, e0178751
    • (2017) PLoS One , vol.12
    • Boza, V.1    Brejova, B.2    Vinar, T.3
  • 42
    • 85040786242 scopus 로고    scopus 로고
    • Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning
    • Teng, H., Hall, M.B., Duarte, T., Cao, M.D. and Coin, L. (2017) Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. bioRxiv, 179531, doi: https://doi.org/10.1101/179531
    • (2017) bioRxiv
    • Teng, H.1    Hall, M.B.2    Duarte, T.3    Cao, M.D.4    Coin, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.