메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1-337

Network anomaly detection: A machine learning perspective

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER CRIME; INSURANCE; INTEROPERABILITY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MILITARY APPLICATIONS; NETWORK SECURITY;

EID: 85053983816     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (153)

References (431)
  • 1
    • 85053977192 scopus 로고    scopus 로고
    • http://www.softpanorama.org/security/intrusion detection.shtml.
  • 2
    • 84867858473 scopus 로고    scopus 로고
    • RT-MOVICAB-IDS: Addressing real-time intrusion detection
    • January
    • A. H. Navarro, M., Corchado, E., and Julin, V. RT-MOVICAB-IDS: Addressing real-time intrusion detection. Future Generation Computer Systems 29, 1 (January 2013), 250–261.
    • (2013) Future Generation Computer Systems , vol.29 , Issue.1 , pp. 250-261
    • Navarro, A.H.M.1    Corchado, E.2    Julin, V.3
  • 3
    • 85053974435 scopus 로고    scopus 로고
    • MATLAB
    • Adam Pocock. MIToolbox, 2012. MATLAB, http://mloss.org/software/view/325/.
    • (2012) Mitoolbox
  • 4
    • 0347718066 scopus 로고    scopus 로고
    • Fast algorithms for projected clustering
    • New York, USA, ACM
    • Aggarwal, C., Wolf, J. L., Yu, P. S., and Procopiue, C. M. Fast algorithms for projected clustering. In ACM SIG-MOD’99 (New York, USA, 1999), ACM, pp. 61–72.
    • (1999) ACM SIG-MOD’99 , pp. 61-72
    • Aggarwal, C.1    Wolf, J.L.2    Yu, P.S.3    Procopiue, C.M.4
  • 5
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • ACM
    • Aggarwal, C., and Yu, P. S. Finding generalized projected clusters in high dimensional spaces. In ACM SIGMOD Record (2000), vol. 29, ACM, pp. 70–81.
    • (2000) ACM SIGMOD Record , vol.29 , pp. 70-81
    • Aggarwal, C.1    Yu, P.S.2
  • 6
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Seattle, ACM
    • Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. Automatic subspace clustering of high dimensional data for data mining applications. In ACM SIGMOD (Seattle, 1998), ACM, pp. 94–105.
    • (1998) ACM SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 7
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • ACM
    • Agrawal, R., Imieliński, T., and Swami, A. Mining association rules between sets of items in large databases. In ACM SIGMOD Record (1993), vol. 22, ACM, pp. 207–216.
    • (1993) ACM SIGMOD Record , vol.22 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 8
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • (Washington, DC, USA, May, ACM, pp
    • Agrawal, R., Imielinski, T., and Swami, A. Mining association rules between sets of items in large databases. In Proc. of the ACM SIGMOD Conference (Washington, DC, USA, May 1993), ACM, pp. 207–216.
    • (1993) Proc. of the ACM SIGMOD Conference , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 10
    • 47949100550 scopus 로고    scopus 로고
    • A comprehensive survey of numeric and symbolic outlier mining techniques
    • Agyemang, M., Barker, K., and Alhajj, R. A comprehensive survey of numeric and symbolic outlier mining techniques. Intelligence Data Analysis 10, 6 (2006), 521–538.
    • (2006) Intelligence Data Analysis , vol.10 , Issue.6 , pp. 521-538
    • Agyemang, M.1    Barker, K.2    Alhajj, R.3
  • 12
    • 79960352377 scopus 로고    scopus 로고
    • Network Intrusion Detection and Prevention: Concepts and Techniques
    • Springer, October
    • Ali, A. G., Lu, W., and Tavallaee, M. Network Intrusion Detection and Prevention: Concepts and Techniques. Advances in Information Security. Springer, October 2009.
    • (2009) Advances in Information Security
    • Ali, A.G.1    Lu, W.2    Tavallaee, M.3
  • 14
    • 33748100382 scopus 로고    scopus 로고
    • RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
    • Amini, M., Jalili, R., and Shahriari, H. R. RT-UNNID: a practical solution to real-time network-based intrusion detection using unsupervised neural networks. Computers & Security 25, 6 (2006), 459–468.
    • (2006) Computers & Security , vol.25 , Issue.6 , pp. 459-468
    • Amini, M.1    Jalili, R.2    Shahriari, H.R.3
  • 17
    • 0037986866 scopus 로고
    • Detecting unusual program behavior using the statistical component of the next-generation intrusion detection expert system (Nides)
    • SRI International, USA
    • Anderson, D., Lunt, T. F., Javitz, H., Tamaru, A., and Valdes, A. Detecting unusual program behavior using the statistical component of the next-generation intrusion detection expert system (nides). Tech. Rep. SRIO-CSL-95-06, Computer Science Laboratory, SRI International, USA, 1995.
    • (1995) Tech. Rep. SRIO-CSL-95-06, Computer Science Laboratory
    • Anderson, D.1    Lunt, T.F.2    Javitz, H.3    Tamaru, A.4    Valdes, A.5
  • 18
    • 0004048154 scopus 로고
    • Computer security threat monitoring and surveillance
    • James P Anderson Co, Fort Washington, P. A., April
    • Anderson, J. P. Computer security threat monitoring and surveillance. Tech. rep., James P Anderson Co, Fort Washington, P. A., April 1980.
    • (1980) Tech. Rep.
    • Anderson, J.P.1
  • 19
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • ACM
    • Ankerest, M., Breuing, M. M., Kriegel, H. P., and Sander, J. Optics: Ordering points to identify the clustering structure. In ACM SIGMOD (1999), ACM, pp. 49–60.
    • (1999) ACM SIGMOD , pp. 49-60
    • Ankerest, M.1    Breuing, M.M.2    Kriegel, H.P.3    Sander, J.4
  • 21
    • 0004112236 scopus 로고    scopus 로고
    • Lagrange multipliers
    • 3rd ed (Orlando, 1985), Academic Press
    • Arfken, G. Lagrange multipliers. In Mathematical Methods for Physicists 3rd ed (Orlando, 1985), Academic Press, pp. 945–950.
    • Mathematical Methods for Physicists , pp. 945-950
    • Arfken, G.1
  • 22
    • 79955482186 scopus 로고    scopus 로고
    • HMMPayl: An intrusion detection system based on hidden Markov models
    • Ariu, D., Tronci, R., and Giacinto, G. HMMPayl: An intrusion detection system based on hidden Markov models. Computers & Security 30, 4 (2011), 221–241.
    • (2011) Computers & Security , vol.30 , Issue.4 , pp. 221-241
    • Ariu, D.1    Tronci, R.2    Giacinto, G.3
  • 24
    • 0033281215 scopus 로고    scopus 로고
    • The base-rate fallacy and its implications for the difficulty of intrusion detection
    • New York, NY, USA, ACM
    • Axelsson, S. The base-rate fallacy and its implications for the difficulty of intrusion detection. In Proc. of the 6th ACM Conference on Computer and Communications Security (New York, NY, USA, 1999), ACM, pp. 1–7.
    • (1999) Proc. of the 6Th ACM Conference on Computer and Communications Security , pp. 1-7
    • Axelsson, S.1
  • 25
    • 84928016636 scopus 로고    scopus 로고
    • The base-rate fallacy and the difficulty of intrusion detection
    • August
    • Axelsson, S. The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System Security 3, 3 (August 2000), 186–205.
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.3 , pp. 186-205
    • Axelsson, S.1
  • 26
    • 35248893423 scopus 로고    scopus 로고
    • Finding natural clusters using multi-cluster combiner based shared nearest neighbours
    • Berlin, Heidelberg, Springer Verlag
    • Ayad, H., and Kamel, M. Finding natural clusters using multi-cluster combiner based shared nearest neighbours. In Proc of Multi-classifier systems (Berlin, Heidelberg, 2003), Springer Verlag, pp. 166–175.
    • (2003) Proc of Multi-Classifier Systems , pp. 166-175
    • Ayad, H.1    Kamel, M.2
  • 30
    • 0035879674 scopus 로고    scopus 로고
    • Intrusion detection through learning behavior model
    • July
    • Balajinath, B., and Raghavan, S. V. Intrusion detection through learning behavior model. Computer Communications 24, 12 (July 2001), 1202–1212.
    • (2001) Computer Communications , vol.24 , Issue.12 , pp. 1202-1212
    • Balajinath, B.1    Raghavan, S.V.2
  • 32
    • 0035248083 scopus 로고    scopus 로고
    • Pixel classification using variable string genetic algorithms with chromosomal differentiation
    • Bandyopadhyay, S., and Pal, S. K. Pixel classification using variable string genetic algorithms with chromosomal differentiation. IEEE Transactions on Geoscience and Remote Sensing 39, 2 (2001), 303–308.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.2 , pp. 303-308
    • Bandyopadhyay, S.1    Pal, S.K.2
  • 37
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., and Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning 36, 1 (1999), 105–139.
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 38
  • 41
    • 85053973024 scopus 로고    scopus 로고
    • Pyml-machine learning in python, 2009
    • Ben-Hur, A. Pyml-machine learning in python, 2009. Software available at http://pyml.sourceforge.net.
    • Software
    • Ben-Hur, A.1
  • 44
    • 84856748550 scopus 로고    scopus 로고
    • A hybrid model for network security systems: Integrating intrusion detection system with survivability
    • Bhaskar, T., Kamath, B. N., and Moitra, S. D. A hybrid model for network security systems: Integrating intrusion detection system with survivability. International Journal of Network Security 7, 2 (2008), 249–260.
    • (2008) International Journal of Network Security , vol.7 , Issue.2 , pp. 249-260
    • Bhaskar, T.1    Kamath, B.N.2    Moitra, S.D.3
  • 45
    • 80053510589 scopus 로고    scopus 로고
    • Surveying port scans and their detection methodologies
    • April
    • Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. Surveying port scans and their detection methodologies. The Computer Journal 54, 4 (April 2011), 1–17.
    • (2011) The Computer Journal , vol.54 , Issue.4 , pp. 1-17
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 46
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • Bilmes, J. A gentle tutorial on the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Tech. Rep. ICSI-TR-97-021, University of Berkeley, 1997.
    • (1997) Tech. Rep. ICSI-TR-97-021, University of Berkeley
    • Bilmes, J.1
  • 47
    • 47649084785 scopus 로고    scopus 로고
    • A parallelization of density based clustering technique on distributed memory multi-computer
    • Ahmedabad
    • Borah, B., and Bhattacharyya, D. K. A parallelization of density based clustering technique on distributed memory multi-computer. In ADCOM’04 (Ahmedabad, 2004), pp. 536–541.
    • (2004) ADCOM’04 , pp. 536-541
    • Borah, B.1    Bhattacharyya, D.K.2
  • 51
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Machine Learning 45, 1 (2001), 5–32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 53
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • June
    • Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J. LOF: Identifying density-based local outliers. ACM SIGMOD 29, 2 (June 2000), 93–104.
    • (2000) ACM SIGMOD , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.M.1    Kriegel, H.P.2    Ng, R.T.3    Sander, J.4
  • 54
    • 0031162961 scopus 로고    scopus 로고
    • Dynamic itemset counting and implication rules for market basket data
    • Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. Dynamic itemset counting and implication rules for market basket data. vol. 26, Proc. of ACM SIGMOD’97, pp. 255–268.
    • Proc. of ACM SIGMOD’97 , vol.26 , pp. 255-268
    • Brin, S.1    Motwani, R.2    Ullman, J.D.3    Tsur, S.4
  • 56
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • Brown, G., Pocock, A., Zhao, M., and Luján, M. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. The Journal of Machine Learning Research 13 (2012), 27–66.
    • (2012) The Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.3    Luján, M.4
  • 57
    • 24944591774 scopus 로고    scopus 로고
    • ADWICE — Anomaly detection with real-time incremental clustering
    • Berlin, Germany, May, Springer
    • Burbeck, K., and Nadjm-Tehrani, S. ADWICE — Anomaly detection with real-time incremental clustering. In Proc. of Information Security and Cryptology —ICISC 2004 (Berlin, Germany, May 2005), vol. 3506/2005, Springer, pp. 407–424.
    • (2005) Proc. of Information Security and Cryptology —ICISC 2004 , vol.3506-2005 , pp. 407-424
    • Burbeck, K.1    Nadjm-Tehrani, S.2
  • 58
    • 0242289557 scopus 로고    scopus 로고
    • A rough set theory based method for anomaly intrusion detection in computer network systems
    • November
    • Cai, Z., Guan, X., Shao, P., Peng, Q., and Sun, G. A rough set theory based method for anomaly intrusion detection in computer network systems. Expert Systems 20, 5 (November 2003), 251–259.
    • (2003) Expert Systems , vol.20 , Issue.5 , pp. 251-259
    • Cai, Z.1    Guan, X.2    Shao, P.3    Peng, Q.4    Sun, G.5
  • 60
    • 79956035662 scopus 로고    scopus 로고
    • UNADA: Unsupervised network anomaly detection using sub-space outliers ranking
    • (Networking’11) (Heidelberg, Springer Verlag Berlin
    • Casas, P., Mazel, J., and Owezarski, P. UNADA: Unsupervised network anomaly detection using sub-space outliers ranking. In Proc. of the 10th Int’nl IFIP TC 6 Conference on Networking — Volume Part I (Networking’11) (Heidelberg, 2011), Springer Verlag Berlin, pp. 40–51.
    • (2011) Proc. of the 10Th Int’nl IFIP TC 6 Conference on Networking , vol.Part I , pp. 40-51
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 61
    • 70349266356 scopus 로고    scopus 로고
    • Comprehensive survey on distance/similarity measures between probability density functions
    • Cha, S. H. Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Science 1, 4 (November 2007), 300–307.
    • (2007) International Journal of Mathematical Models and Methods in Applied Science , vol.1 , Issue.4 , pp. 300-307
    • Cha, S.H.1
  • 65
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • Chebrolu, S., Abraham, A., and Thomas, J. P. Feature deduction and ensemble design of intrusion detection systems. Computers & Security 24, 4 (2005), 295–307.
    • (2005) Computers & Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 69
    • 36348929372 scopus 로고    scopus 로고
    • Collaborative Detection of DDoS Attacks over Multiple Network Domains
    • Chen, Y., Hwang, K., and Ku., W.-S. Collaborative Detection of DDoS Attacks over Multiple Network Domains. IEEE Transactions on Parallel Distrib. Syst. 18, 12 (December 2007), 1649–1662.
    • (2007) IEEE Transactions on Parallel Distrib. Syst , vol.18 , Issue.12 , pp. 1649-1662
    • Chen, Y.1    Hwang, K.2    Ku, W.-S.3
  • 70
    • 33845998197 scopus 로고    scopus 로고
    • Survey and taxonomy of feature selection algorithms in intrusion detection system
    • Springer
    • Chen, Y., Li, Y., Cheng, X., and Guo, L. Survey and taxonomy of feature selection algorithms in intrusion detection system. In Information Security and Cryptology (2006), Springer, pp. 153–167.
    • (2006) Information Security and Cryptology , pp. 153-167
    • Chen, Y.1    Li, Y.2    Cheng, X.3    Guo, L.4
  • 71
    • 0002646822 scopus 로고    scopus 로고
    • Entropy based subspace clustering for mining numerical data
    • New York, USA
    • Cheng, C., Fu, A. W., and Zhang, Y. Entropy based subspace clustering for mining numerical data. In SIGKDD’99 (New York, USA, 1999), vol. 3916, pp. 84–93.
    • (1999) SIGKDD’99 , vol.3916 , pp. 84-93
    • Cheng, C.1    Fu, A.W.2    Zhang, Y.3
  • 72
    • 0036039291 scopus 로고    scopus 로고
    • A new cell based clustering method for large, high dimensional data in data mining applications
    • New York, USA, ACM
    • Cheng, J. C., and Jin, D. S. A new cell based clustering method for large, high dimensional data in data mining applications. In ACM Symposium on Applied Computing (New York, USA, 2002), ACM, pp. 503–507.
    • (2002) ACM Symposium on Applied Computing , pp. 503-507
    • Cheng, J.C.1    Jin, D.S.2
  • 78
  • 83
    • 0142253852 scopus 로고    scopus 로고
    • ADAM: A testbed for exploring the use of data mining in intrusion detection
    • Daniel, B., Julia, C., Sushil, J., and Ningning, W. ADAM: A testbed for exploring the use of data mining in intrusion detection. ACM SIGMOD Record 30, 4 (2001), 15–24.
    • (2001) ACM SIGMOD Record , vol.30 , Issue.4 , pp. 15-24
    • Daniel, B.1    Julia, C.2    Sushil, J.3    Ningning, W.4
  • 87
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid methods for feature selection
    • Citeseer
    • Das, S. Filters, wrappers and a boosting-based hybrid methods for feature selection. In Machine Learning— Int’nl Workshop (2001), Citeseer, pp. 74–81.
    • (2001) Machine Learning— Int’nl Workshop , pp. 74-81
    • Das, S.1
  • 89
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M., and Liu, H. Feature selection for classification. Intelligent Data Analysis 1, 1-4 (1997), 131–156.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 90
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash, M., and Liu, H. Consistency-based search in feature selection. Artificial Intelligence 151, 1 (2003), 155–176.
    • (2003) Artificial Intelligence , vol.151 , Issue.1 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 95
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by a multivalued mapping
    • Dempster, A. P. Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38 (1967), 325–339.
    • (1967) Ann. Math. Stat. , vol.38 , pp. 325-339
    • Dempster, A.P.1
  • 97
    • 0343586025 scopus 로고    scopus 로고
    • A data clustering algorithm on distributed memory multi-processors
    • San Diego, USA,)
    • Dhilon, I. S., and Modha, D. S. A data clustering algorithm on distributed memory multi-processors. In SIGKDD’99 (San Diego, USA, 1999), vol. 3916.
    • (1999) SIGKDD’99 , vol.3916
    • Dhilon, I.S.1    Modha, D.S.2
  • 99
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40, 2 (2000), 139–157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 100
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C., and Peng, H. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3, 2 (2005), 185–205.
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 102
    • 77953236621 scopus 로고    scopus 로고
    • A survey on network coordinates systems, design, and security
    • October
    • Donnet, B., Gueye, B., and Kaafar, M. A. A survey on network coordinates systems, design, and security. IEEE Communication Surveys & Tutorials 12, 4 (October 2010), 488–503.
    • (2010) IEEE Communication Surveys & Tutorials , vol.12 , Issue.4 , pp. 488-503
    • Donnet, B.1    Gueye, B.2    Kaafar, M.A.3
  • 107
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • Dunn, J. Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4 (1974), 95–104.
    • (1974) Journal of Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.1
  • 108
    • 84881108454 scopus 로고    scopus 로고
    • Free Software Foundation
    • Eaton, J., et al. Gnu Octave. Free Software Foundation, 1997.
    • (1997) Gnu Octave
    • Eaton, J.1
  • 109
    • 70349687675 scopus 로고
    • On discordant observations
    • Edgeworth, F. Y. On discordant observations. Philosophy Magazine 23, 5 (1887), 364–375.
    • (1887) Philosophy Magazine , vol.23 , Issue.5 , pp. 364-375
    • Edgeworth, F.Y.1
  • 111
    • 84874730558 scopus 로고    scopus 로고
    • Finding clusters of different sizes, shapes and densities in noisy high dimensional data
    • Ertoz, L., Stainbach, M., and Kumar, V. Finding clusters of different sizes, shapes and densities in noisy high dimensional data. In SIAM’03 (2003).
    • (2003) SIAM’03
    • Ertoz, L.1    Stainbach, M.2    Kumar, V.3
  • 112
    • 0009900351 scopus 로고    scopus 로고
    • Anomaly detection over noisy data using learned probability distributions
    • Morgan Kaufmann Publishers Inc
    • Eskin, E. Anomaly detection over noisy data using learned probability distributions. In Proc. of the 7th Int’nl Conference on Machine Learning (2000), Morgan Kaufmann Publishers Inc., pp. 255–262.
    • (2000) Proc. of the 7Th Int’nl Conference on Machine Learning , pp. 255-262
    • Eskin, E.1
  • 114
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Portland, Aug., AAAI Press
    • Ester, M., and Kriegel, H. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd Int’nl Conf. on Knowledge Discovery and Data Mining, Portland (Portland, Aug. 1996), AAAI Press, pp. 226–231.
    • (1996) Proc. 2Nd Int’nl Conf. on Knowledge Discovery and Data Mining, Portland , pp. 226-231
    • Ester, M.1    Kriegel, H.2
  • 115
    • 0001899154 scopus 로고    scopus 로고
    • An incremental clustering for mining in a data warehousing environment
    • New York, USA
    • Ester, M., Kriegel, H. P., Sander, J., Wimmer, M., and Xu, X. An incremental clustering for mining in a data warehousing environment. In Proc. of VLDB98 (New York, USA, 1998).
    • (1998) Proc. of VLDB98
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Wimmer, M.4    Xu, X.5
  • 119
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret, F. Fast binary feature selection with conditional mutual information. The Journal of Machine Learning Research 5 (2004), 1531–1555.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 120
    • 77954816351 scopus 로고    scopus 로고
    • An ensemble-based evolutionary framework for coping with distributed intrusion detection
    • June
    • Folino, G., Pizzuti, C., and Spezzano, G. An ensemble-based evolutionary framework for coping with distributed intrusion detection. Genetic Programming and Evolvable Machines 11, 2 (June 2010), 131–146.
    • (2010) Genetic Programming and Evolvable Machines , vol.11 , Issue.2 , pp. 131-146
    • Folino, G.1    Pizzuti, C.2    Spezzano, G.3
  • 121
    • 33845229615 scopus 로고    scopus 로고
    • Data clustering using evidence accumulation
    • Washington, DC, USA, IEEE Press
    • Fred, A. L. N., and Jain, A. Data clustering using evidence accumulation. In Proc of ICPR’02 (Washington, DC, USA, 2002), IEEE Press, pp. 276–280.
    • (2002) Proc of ICPR’02 , pp. 276-280
    • Fred, A.L.N.1    Jain, A.2
  • 123
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine (English summary)
    • Friedman, J. Greedy function approximation: a gradient boosting machine (English summary). The Annals of Statistics 29, 5 (2001), 1189–1232.
    • (2001) The Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 126
    • 33847704184 scopus 로고    scopus 로고
    • K-Means+ID3: A novel method for supervised anomaly detection by cascading k-means clustering and ID3 decision tree learning methods
    • Mar
    • Gaddam, S. R., Phoha, V. V., and Balagani, K. S. K-Means+ID3: A novel method for supervised anomaly detection by cascading k-means clustering and ID3 decision tree learning methods. IEEE Transactions on Knowledge and Data Engineering 19, 3 (Mar 2007), 345–354.
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.3 , pp. 345-354
    • Gaddam, S.R.1    Phoha, V.V.2    Balagani, K.S.3
  • 131
    • 36749023984 scopus 로고    scopus 로고
    • Dealing with software viruses: A biological paradigm
    • Gelenbe, E. Dealing with software viruses: A biological paradigm. Information Security Technical Report 12(4) (2007), 242–250.
    • (2007) Information Security Technical Report , vol.12 , Issue.4 , pp. 242-250
    • Gelenbe, E.1
  • 132
    • 77949285151 scopus 로고    scopus 로고
    • A novel intrusion detection scheme for network-attached storage based on multisource information fusion
    • Washington, DC, USA, IEEE Computer Society
    • Geng, L., and Jia, H. A novel intrusion detection scheme for network-attached storage based on multisource information fusion. In Proc. of the International Conference on Computational Intelligence and Security (Washington, DC, USA, 2009), IEEE Computer Society, pp. 469–473.
    • (2009) Proc. of the International Conference on Computational Intelligence and Security , pp. 469-473
    • Geng, L.1    Jia, H.2
  • 134
    • 19544370003 scopus 로고    scopus 로고
    • Loaded: Link-based outlier and anomaly detection in evolving data sets
    • Brighton, UK, IEEE Computer Society
    • Ghoting, A., Otey, M. E., and Parthasarathy, S. Loaded: Link-based outlier and anomaly detection in evolving data sets. In Proc. of the 4th IEEE Int’nl Conference on Data Mining (Brighton, UK, Nov. 2004), IEEE Computer Society, pp. 387– 390.
    • (2004) Proc. of the 4Th IEEE Int’nl Conference on Data Mining , pp. 387-390
    • Ghoting, A.1    Otey, M.E.2    Parthasarathy, S.3
  • 135
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • January
    • Giacinto, G., Perdisci, R., Rio, M. D., and Roli, F. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Information Fusion 9, 1 (January 2008), 69–82.
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Rio, M.D.3    Roli, F.4
  • 136
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • August
    • Giacinto, G., Roli, F., and Didaci, L. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern Recognition Letters 24, 12 (August 2003), 1795–1803.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 137
    • 0000190711 scopus 로고
    • Pioneer maps of health and disease in England
    • Gilbert, E. Pioneer maps of health and disease in England. Geographical Journal 124 (1958), 172–183.
    • (1958) Geographical Journal , vol.124 , pp. 172-183
    • Gilbert, E.1
  • 138
  • 139
    • 79953811849 scopus 로고    scopus 로고
    • A survey of outlier detection methods in network anomaly identification
    • Gogoi, P., Bhattacharyya, D. K., Borah, B., and Kalita, J. K. A survey of outlier detection methods in network anomaly identification. The Computer Journal 54, 4 (2011), 570–588.
    • (2011) The Computer Journal , vol.54 , Issue.4 , pp. 570-588
    • Gogoi, P.1    Bhattacharyya, D.K.2    Borah, B.3    Kalita, J.K.4
  • 141
    • 78651547976 scopus 로고    scopus 로고
    • Anomaly detection analysis of intrusion data using supervised and unsupervised approach
    • Feb
    • Gogoi, P., Borah, B., and Bhattacharyya, D. K. Anomaly detection analysis of intrusion data using supervised and unsupervised approach. Journal of Convergence Information Technology 5, 1 (Feb. 2010), 95–110.
    • (2010) Journal of Convergence Information Technology , vol.5 , Issue.1 , pp. 95-110
    • Gogoi, P.1    Borah, B.2    Bhattacharyya, D.K.3
  • 148
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • ACM
    • Guha, S., Rastogi, R., and Shim, K. Cure: An efficient clustering algorithm for large databases. In SIGMOD 1998 (1998), vol. 27, ACM, pp. 73–84.
    • (1998) SIGMOD 1998 , vol.27 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 149
  • 151
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. Gene selection for cancer classification using support vector machines. Machine Learning 46, 1 (2002), 389–422.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 154
    • 84882994448 scopus 로고    scopus 로고
    • Haag, P. Nfdump & nfsen. http://nfdump.sourceforge.net/, September, 2010.
    • (2010) Nfdump & Nfsen
    • Haag, P.1
  • 157
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • Han, J., Pei, J., Yin, Y., and Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, vol 8, pp. 53– 87.
    • Data Mining and Knowledge Discovery , vol.8 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 158
    • 33947227459 scopus 로고    scopus 로고
    • An evolutionary approach to multi-objective clustering
    • Handl, J., and Knowles, J. An evolutionary approach to multi-objective clustering. IEEE Transactions on Evolutionary Computing 11, 1 (2007), 56–76.
    • (2007) IEEE Transactions on Evolutionary Computing , vol.11 , Issue.1 , pp. 56-76
    • Handl, J.1    Knowles, J.2
  • 159
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • Handl, J., Knowles, J., and Kell, D. B. Computational cluster validation in post-genomic data analysis. Bioinformatics 21 (2005), 3201–3212.
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 161
    • 15744370034 scopus 로고    scopus 로고
    • A taxonomy of network and computer attacks
    • Hansman, S., and Hunt, R. A taxonomy of network and computer attacks. Computers & Security 24, 1 (September 2005), 31–43.
    • (2005) Computers & Security , vol.24 , Issue.1 , pp. 31-43
    • Hansman, S.1    Hunt, R.2
  • 162
    • 0001138328 scopus 로고
    • Algorithm AS 136: A k-means clustering algorithm
    • Hartigan, J. A., and Wong, M. A. Algorithm AS 136: A k-means clustering algorithm. Applied Statistics 28, 1 (1979), 100–108.
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 167
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • AAAI Press
    • Hinneburg, A., Er, H., and Keim, D. A. An efficient approach to clustering in large multimedia databases with noise. In Proc. of Knowledge Discovery and Data Mining (1998), AAAI Press, pp. 58–65.
    • (1998) Proc. of Knowledge Discovery and Data Mining , pp. 58-65
    • Hinneburg, A.1    Er, H.2    Keim, D.A.3
  • 169
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge, V., and Austin, J. A survey of outlier detection methodologies. Artificial Intellligence Review 22, 2 (2004), 85– 126.
    • (2004) Artificial Intellligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 170
  • 173
    • 0031224390 scopus 로고    scopus 로고
    • Use of contextual information for feature ranking and discretization
    • Hong, S. Use of contextual information for feature ranking and discretization. IEEE Transactions on Knowledge and Data Engineering 9, 5 (1997), 718–730.
    • (1997) IEEE Transactions on Knowledge and Data Engineering , vol.9 , Issue.5 , pp. 718-730
    • Hong, S.1
  • 174
    • 0029224819 scopus 로고    scopus 로고
    • Set oriented mining for association rules in relational databases
    • Houtsma, M., and Swami, A. Set oriented mining for association rules in relational databases. IEEE Conference on Data Engineering, pp. 25–34.
    • IEEE Conference on Data Engineering , pp. 25-34
    • Houtsma, M.1    Swami, A.2
  • 178
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Hu, Q., Yu, D., Liu, J., and Wu, C. Neighborhood rough set based heterogeneous feature subset selection. Information Sciences 178, 18 (2008), 3577–3594.
    • (2008) Information Sciences , vol.178 , Issue.18 , pp. 3577-3594
    • Hu, Q.1    Yu, D.2    Liu, J.3    Wu, C.4
  • 181
    • 35449003730 scopus 로고    scopus 로고
    • A user-oriented ontology-based approach for network intrusion detection
    • January
    • Hung, S. S., and Liu, D. S. M. A user-oriented ontology-based approach for network intrusion detection. Computer Standards & Interfaces 30, 1–2 (January 2008), 78–88.
    • (2008) Computer Standards & Interfaces , vol.30 , Issue.1-2 , pp. 78-88
    • Hung, S.S.1    Liu, D.S.M.2
  • 182
    • 0029267472 scopus 로고
    • State transition analysis: A rule-based intrusion detection approach
    • Ilgun, K., Kemmerer, R., and Porras, P. State transition analysis: A rule-based intrusion detection approach. IEEE Transactions on Software Engineering 21, 3 (1995), 181–199.
    • (1995) IEEE Transactions on Software Engineering , vol.21 , Issue.3 , pp. 181-199
    • Ilgun, K.1    Kemmerer, R.2    Porras, P.3
  • 186
    • 34547483900 scopus 로고    scopus 로고
    • Towards effective and efficient distributed clustering
    • Melbourne, FL
    • Januzaj, E., Kriegel, H. P., and Pfeifle, M. Towards effective and efficient distributed clustering. In ICDM’03 (Melbourne, FL, 2003), pp. 49–58.
    • (2003) ICDM’03 , pp. 49-58
    • Januzaj, E.1    Kriegel, H.P.2    Pfeifle, M.3
  • 189
    • 33745243253 scopus 로고    scopus 로고
    • Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies
    • Jiang, J., and Papavassiliou, S. Enhancing network traffic prediction and anomaly detection via statistical network traffic separation and combination strategies. Computer Communications 29, 10 (June 2006), 1627–1638.
    • (2006) Computer Communications , vol.29 , Issue.10 , pp. 1627-1638
    • Jiang, J.1    Papavassiliou, S.2
  • 192
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • Karypsis, G. and Han H. and Kumar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer 32, 8 (1999), 68–75.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypsis, G.1    Han, H.2    Kumar, V.3
  • 194
    • 85053942632 scopus 로고
    • Clustering by Means of Medoids. Reports of the Faculty of Mathematics and Informatics. Delft University of
    • Kaufman, L., and Rousseeuw, P. Clustering by Means of Medoids. Reports of the Faculty of Mathematics and Informatics. Delft University of Technology, 1987.
    • (1987) Technology
    • Kaufman, L.1    Rousseeuw, P.2
  • 196
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • October
    • Khan, L., Awad, M., and Thuraisingham, B. A new intrusion detection system using support vector machines and hierarchical clustering. The VLDB Journal 16, 4 (October 2007), 507–521.
    • (2007) The VLDB Journal , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 197
    • 84871879955 scopus 로고    scopus 로고
    • Rule based network intrusion detection using genetic algorithm
    • March
    • Khan, M. S. A. Rule based network intrusion detection using genetic algorithm. International Journal of Computer Applications 18, 8 (March 2011), 26–29.
    • (2011) International Journal of Computer Applications , vol.18 , Issue.8 , pp. 26-29
    • Khan, M.S.A.1
  • 198
    • 49749119545 scopus 로고    scopus 로고
    • Control theoretic approach to intrusion detection using a distributed hidden Markov model
    • August
    • Khanna, R., and Liu, H. Control theoretic approach to intrusion detection using a distributed hidden Markov model. IEEE Wireless Communications 15, 4 (August 2008), 24–33.
    • (2008) IEEE Wireless Communications , vol.15 , Issue.4 , pp. 24-33
    • Khanna, R.1    Liu, H.2
  • 200
    • 40949101349 scopus 로고    scopus 로고
    • A non-parametric multi-chart CUSUM test for rapid detection of DoS attacks in computer networks
    • December
    • Kim, H., Rozovskii, B. L., and Tartakovsky, A. G. A non-parametric multi-chart CUSUM test for rapid detection of DoS attacks in computer networks. International Journal of Computing and Information Sciences 2, 3 (December 2004), 149–158.
    • (2004) International Journal of Computing and Information Sciences , vol.2 , Issue.3 , pp. 149-158
    • Kim, H.1    Rozovskii, B.L.2    Tartakovsky, A.G.3
  • 201
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • John Wiley & Sons Ltd
    • Kira, K., and Rendell, L. The feature selection problem: Traditional methods and a new algorithm. In Proc. of the National Conference on Artificial Intelligence (1992), John Wiley & Sons Ltd., pp. 129–129.
    • (1992) Proc. of the National Conference on Artificial Intelligence , pp. 129
    • Kira, K.1    Rendell, L.2
  • 202
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • New York, USA, Sep, Morgan Kaufmann
    • Knorr, E. M., and Ng, R. T. Algorithms for mining distance-based outliers in large datasets. In Proc. of the 24th Int. Conf. on Very Large Databases (New York, USA, Sep. 1998), Morgan Kaufmann, pp. 392–403.
    • (1998) Proc. of the 24Th Int. Conf. on Very Large Databases , pp. 392-403
    • Knorr, E.M.1    Ng, R.T.2
  • 203
    • 0012905555 scopus 로고    scopus 로고
    • Finding intentional knowledge of distance-based outliers
    • Edinburgh, Scotland, UK, Sep, Morgan Kaufmann
    • Knorr, E. M., and Ng, R. T. Finding intentional knowledge of distance-based outliers. In Proc. of the 25th International Conference on Very Large Data Bases (Edinburgh, Scotland, UK, Sep. 1999), Morgan Kaufmann, pp. 211–222.
    • (1999) Proc. of the 25Th International Conference on Very Large Data Bases , pp. 211-222
    • Knorr, E.M.1    Ng, R.T.2
  • 204
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., and John, G. Wrappers for feature subset selection. Artificial Intelligence 97, 1 (1997), 273–324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 206
    • 77649275031 scopus 로고    scopus 로고
    • A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes
    • Mar
    • Koufakou, A., and Georgiopoulos, M. A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes. Data Mining and Knowledge Discovery 20, 2 (Mar. 2010), 259–289.
    • (2010) Data Mining and Knowledge Discovery , vol.20 , Issue.2 , pp. 259-289
    • Koufakou, A.1    Georgiopoulos, M.2
  • 209
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using the caret package
    • Kuhn, M. Building predictive models in R using the caret package. Journal of Statistical Software 28, 5 (2008), 1–26.
    • (2008) Journal of Statistical Software , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 212
    • 84857459505 scopus 로고    scopus 로고
    • Combining pattern classifiers: Methods and algorithms
    • Kuncheva, L. Combining pattern classifiers: Methods and algorithms. IEEE Transactions on Neural Networks 18, 3 (2007), 964–964.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 964
    • Kuncheva, L.1
  • 214
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the boruta package
    • September
    • Kursa, M. B., and Rudnicki, W. R. Feature selection with the boruta package. Journal of Statistical Software 36, 11 (September 2010), 1–13.
    • (2010) Journal of Statistical Software , vol.36 , Issue.11 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 217
    • 26844582131 scopus 로고    scopus 로고
    • Defending against spoofed DDoS attacks with path fingerprint
    • Lee, F.-Y., and Shieh, S.-P. Defending against spoofed DDoS attacks with path fingerprint. Computers & Security 24 (2005), 571–586.
    • (2005) Computers & Security , vol.24 , pp. 571-586
    • Lee, F.-Y.1    Shieh, S.-P.2
  • 221
    • 85084163349 scopus 로고    scopus 로고
    • Data mining approaches for intrusion detection
    • USA, USENIX Association
    • Lee, W., and Stolfo, S. J. Data mining approaches for intrusion detection. In Proc. of the 7th USENIX Security Symposium (USA, 1998), vol. 7, USENIX Association, pp. 79–94.
    • (1998) Proc. of the 7Th USENIX Security Symposium , vol.7 , pp. 79-94
    • Lee, W.1    Stolfo, S.J.2
  • 222
    • 84940104123 scopus 로고    scopus 로고
    • A data mining framework for building intrusion detection models
    • Oakland, CA, USA, IEEE
    • Lee, W., Stolfo, S. J., and Mok, K. W. A data mining framework for building intrusion detection models. In Proc. of the IEEE Symposium on Security and Privacy (Oakland, CA, USA, 1999), IEEE, pp. 120–132.
    • (1999) Proc. of the IEEE Symposium on Security and Privacy , pp. 120-132
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 223
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection—a data mining approach
    • Lee, W., Stolfo, S. J., and Mok, K. W. Adaptive intrusion detection—a data mining approach. Artificial Intelligence Review 14 (2000), 533–567.
    • (2000) Artificial Intelligence Review , vol.14 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 224
    • 4344698326 scopus 로고    scopus 로고
    • Anomaly detection based on unsupervised niche clustering with application to network intrusion detection
    • Leon, E., Nasraoui, O., and Gomez, J. Anomaly detection based on unsupervised niche clustering with application to network intrusion detection. IEEE Congress on Evolutionary Computation 1 (2004), 502–508.
    • (2004) IEEE Congress on Evolutionary Computation , vol.1 , pp. 502-508
    • Leon, E.1    Nasraoui, O.2    Gomez, J.3
  • 225
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Newcastle, NSW, Australia, January/February, Australian Computer Society, Inc., Darlinghurst
    • Leung, K., and Leckie, C. Unsupervised anomaly detection in network intrusion detection using clusters. In Proc. of 28th Australasian Conference on Computer Science-Volume 38 (Newcastle, NSW, Australia, January/February 2005), Australian Computer Society, Inc., Darlinghurst, pp. 333–342.
    • (2005) Proc. of 28Th Australasian Conference on Computer Science , vol.38 , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 226
    • 48349140837 scopus 로고    scopus 로고
    • A lightweight online network anomaly detection scheme based on data mining methods
    • USA, IEEE CS
    • Li, Y., and Fang, B. X. A lightweight online network anomaly detection scheme based on data mining methods. In Proc. of the IEEE International Conference on Network Protocols (USA, 2007), IEEE CS, pp. 340–341.
    • (2007) Proc. of the IEEE International Conference on Network Protocols , pp. 340-341
    • Li, Y.1    Fang, B.X.2
  • 228
    • 0030676601 scopus 로고    scopus 로고
    • How to systematically classify computer security intrusions
    • Lindqvist, U., and Jonsson, E. How to systematically classify computer security intrusions. IEEE Security and Privacy (1997), 154–163.
    • (1997) IEEE Security and Privacy , pp. 154-163
    • Lindqvist, U.1    Jonsson, E.2
  • 231
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA neural networks
    • Liu, G., Yi, Z., and Yang, S. A hierarchical intrusion detection model based on the PCA neural networks. Neurocomputing 70, 7-9 (2007), 1561–1568.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1561-1568
    • Liu, G.1    Yi, Z.2    Yang, S.3
  • 233
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection — A filter solution
    • Citeseer
    • Liu, H., Setiono, R., et al. A probabilistic approach to feature selection — A filter solution. In Machine Learning —Int’nl Workshop (1996), Citeseer, pp. 319–327.
    • (1996) Machine Learning —Int’nl Workshop , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 234
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H., and Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17, 4 (2005), 491–502.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 243
    • 0036804085 scopus 로고    scopus 로고
    • Network intrusion and fault detection: A statistical anomaly approach
    • October
    • Manikopoulos, C., and Papavassiliou, S. Network intrusion and fault detection: A statistical anomaly approach. IEEE Communications Magazine 40, 10 (October 2002), 76–82.
    • (2002) IEEE Communications Magazine , vol.40 , Issue.10 , pp. 76-82
    • Manikopoulos, C.1    Papavassiliou, S.2
  • 245
    • 84962806892 scopus 로고    scopus 로고
    • A short survey of intrusion detection systems. Problems of Engineering Cybernetics and Robotics, Institute of Information Technologies
    • Marinova-Boncheva, V. A short survey of intrusion detection systems. Problems of Engineering Cybernetics and Robotics, Institute of Information Technologies, 1113 Sofia 58 (2007), 23–30.
    • Sofia , vol.58 , Issue.2007 , pp. 23-30
    • Marinova-Boncheva, V.1
  • 247
    • 8844278616 scopus 로고    scopus 로고
    • Fuzzy partitioning using real-coded variable-length genetic algorithm for pixel classification
    • Maulik, U., and Bandyopadhyay, S. Fuzzy partitioning using real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing 41, 5 (2003), 1075–1081.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , Issue.5 , pp. 1075-1081
    • Maulik, U.1    Bandyopadhyay, S.2
  • 249
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in microarray data using variable complementarity
    • Meyer, P., Schretter, C., and Bontempi, G. Information-theoretic feature selection in microarray data using variable complementarity. IEEE Journal of Selected Topics in Signal Processing 2, 3 (2008), 261–274.
    • (2008) IEEE Journal of Selected Topics in Signal Processing , vol.2 , Issue.3 , pp. 261-274
    • Meyer, P.1    Schretter, C.2    Bontempi, G.3
  • 250
    • 78649403251 scopus 로고    scopus 로고
    • A clustering-based classifier selection method for network intrusion detection
    • Hefei, China, August, IEEE
    • Mi, A., and Hai, L. A clustering-based classifier selection method for network intrusion detection. In Proc. of the 5th International Conference on Computer Science & Education (Hefei, China, August 2010), IEEE, pp. 1001–1004.
    • (2010) Proc. of the 5Th International Conference on Computer Science & Education , pp. 1001-1004
    • Mi, A.1    Hai, L.2
  • 253
    • 27644518127 scopus 로고    scopus 로고
    • D-ward: A source-end defense against flooding denial-of-service attacks
    • July
    • Mirkovic, J., and Reiher, P. D-ward: A source-end defense against flooding denial-of-service attacks. IEEE Transactions Dependable and Secure Computing 2, 3 (July 2005), 216–232.
    • (2005) IEEE Transactions Dependable and Secure Computing , vol.2 , Issue.3 , pp. 216-232
    • Mirkovic, J.1    Reiher, P.2
  • 255
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill, Inc., New York, USA
    • Mitchell, T. M. Machine Learning. McGraw-Hill, Inc., New York, USA, 1997.
    • (1997) Machine Learning
    • Mitchell, T.M.1
  • 256
    • 10044299444 scopus 로고    scopus 로고
    • Feature selection and gene clustering from gene expression data
    • Washington, DC, IEEE Computer Society
    • Mitra, P., and Majumder, D. D. Feature selection and gene clustering from gene expression data. In Proc. of the 17th Int’nl Conference on Pattern Recognition (ICPR’04), Volume 2 (Washington, DC, 2004), IEEE Computer Society, pp. 343–346.
    • (2004) Proc. of the 17Th Int’nl Conference on Pattern Recognition (ICPR’04 , vol.2 , pp. 343-346
    • Mitra, P.1    Majumder, D.D.2
  • 259
    • 85053986937 scopus 로고    scopus 로고
    • Inverted matrix: Efficient discovery of frequent items in large datsets in the context of interactive mining
    • Mohammad, E., and Zaine, O. R. Inverted matrix: Efficient discovery of frequent items in large datsets in the context of interactive mining. vol. 26, Proc. of the ACM SIGKDD’03, pp. 255–268.
    • Proc. of the ACM SIGKDD’03 , vol.26 , pp. 255-268
    • Mohammad, E.1    Zaine, O.R.2
  • 260
    • 78149355539 scopus 로고    scopus 로고
    • Feature selection algorithms: A survey and experimental evaluation
    • IEEE CS Press
    • Molina, L., Belanche, L., and Nebot, À. Feature selection algorithms: A survey and experimental evaluation. In IEEE International Conference on Data Mining (2002), IEEE CS Press, pp. 306–313.
    • (2002) IEEE International Conference on Data Mining , pp. 306-313
    • Molina, L.1    Belanche, L.2    Nebot, À.3
  • 262
    • 67349242974 scopus 로고    scopus 로고
    • A logic-based model to support alert correlation in intrusion detection
    • October
    • Morin, B., Mé, L., Debar, H., and Ducassé, M. A logic-based model to support alert correlation in intrusion detection. Information Fusion 10, 4 (October 2009), 285–299.
    • (2009) Information Fusion , vol.10 , Issue.4 , pp. 285-299
    • Morin, B.1    Mé, L.2    Debar, H.3    Ducassé, M.4
  • 263
    • 78651378423 scopus 로고    scopus 로고
    • A K-means and naive Bayes learning approach for better intrusion detection
    • Muda, Z., Yassin, W., Sulaiman, M. N., and Udzir, N. I. A K-means and naive Bayes learning approach for better intrusion detection. Information Technology Journal 10 (2011), 648–655.
    • (2011) Information Technology Journal , vol.10 , pp. 648-655
    • Muda, Z.1    Yassin, W.2    Sulaiman, M.N.3    Udzir, N.I.4
  • 274
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • Otey, M. E., Ghoting, A., and Parthasarathy, S. Fast distributed outlier detection in mixed-attribute data sets. Data Mining and Knowledge Discovery 12, 2-3 (2006), 203–228.
    • (2006) Data Mining and Knowledge Discovery , vol.12 , Issue.2-3 , pp. 203-228
    • Otey, M.E.1    Ghoting, A.2    Parthasarathy, S.3
  • 279
    • 0000106040 scopus 로고
    • Universal approximation using radial basis functions network
    • Park, J., and Sandberg, J. W. Universal approximation using radial basis functions network. Neural Computation 3 (1991), 246–257.
    • (1991) Neural Computation , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, J.W.2
  • 280
    • 84976830511 scopus 로고    scopus 로고
    • An efficient hash based algorithm for mining association rules
    • Park, J. S., Chen, M. S., and Yu, P. S. An efficient hash based algorithm for mining association rules. ACM SIGMOD’95, pp. 175–186.
    • ACM SIGMOD’ , vol.95 , pp. 175-186
    • Park, J.S.1    Chen, M.S.2    Yu, P.S.3
  • 281
    • 0028391673 scopus 로고
    • Application of the recurrent multilayer perceptron in modeling complex process dynamics
    • Parlos, A., Chong, K., and Atiya, A. Application of the recurrent multilayer perceptron in modeling complex process dynamics. IEEE Transactions on Neural Networks 5, 2 (1994), 255–266.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 255-266
    • Parlos, A.1    Chong, K.2    Atiya, A.3
  • 282
    • 77956574669 scopus 로고    scopus 로고
    • Statistical anomaly detection with sensor networks
    • August
    • Paschalidis, I. C., and Chen, Y. Statistical anomaly detection with sensor networks. ACM Transactions on Sensor Networks 7, 2 (August 2010), 17–23.
    • (2010) ACM Transactions on Sensor Networks , vol.7 , Issue.2 , pp. 17-23
    • Paschalidis, I.C.1    Chen, Y.2
  • 284
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • Patcha, A., and Park, J. M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks 51, 12 (2007), 3448–3470.
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.M.2
  • 286
    • 0031145399 scopus 로고    scopus 로고
    • Rough set approach to knowledge-based decision support
    • Pawlak, Z. Rough set approach to knowledge-based decision support. European Journal of Operational Research 99, 1 (1997), 48–57.
    • (1997) European Journal of Operational Research , vol.99 , Issue.1 , pp. 48-57
    • Pawlak, Z.1
  • 288
    • 0033295259 scopus 로고    scopus 로고
    • Bro: A system for detecting network intruders in real-time
    • Paxson, V. Bro: A system for detecting network intruders in real-time. Computer networks 31, 23 (1999), 2435–2463.
    • (1999) Computer Networks , vol.31 , Issue.23 , pp. 2435-2463
    • Paxson, V.1
  • 290
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., and Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 8 (2005), 1226–1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 291
    • 34147099073 scopus 로고    scopus 로고
    • Survey of network-based defense mechanisms countering the DoS and DDoS problems
    • Peng, T., Leckie, C., and Ramamohanarao, K. Survey of network-based defense mechanisms countering the DoS and DDoS problems. ACM Computing Surveys 39, 1 (April 2007), 1–42.
    • (2007) ACM Computing Surveys , vol.39 , Issue.1 , pp. 1-42
    • Peng, T.1    Leckie, C.2    Ramamohanarao, K.3
  • 292
    • 61749083929 scopus 로고    scopus 로고
    • McPAD: A multiple classifier system for accurate payload-based anomaly detection
    • April
    • Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., and Lee, W. McPAD: A multiple classifier system for accurate payload-based anomaly detection. Computer Networks 53, 6 (April 2009), 864–881.
    • (2009) Computer Networks , vol.53 , Issue.6 , pp. 864-881
    • Perdisci, R.1    Ariu, D.2    Fogla, P.3    Giacinto, G.4    Lee, W.5
  • 293
    • 60349101742 scopus 로고    scopus 로고
    • Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems
    • USA, IEEE CS
    • Perdisci, R., Gu, G., and Lee, W. Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems. In Proc. of the 6th International Conference on Data Mining (USA, 2006), IEEE CS, pp. 488–498.
    • (2006) Proc. of the 6Th International Conference on Data Mining , pp. 488-498
    • Perdisci, R.1    Gu, G.2    Lee, W.3
  • 294
    • 25844450147 scopus 로고    scopus 로고
    • Outlier detection algorithms in data mining systems
    • Petrovskiy, M. I. Outlier detection algorithms in data mining systems. Programming and Computer Software 29, 4 (2003), 228– 237.
    • (2003) Programming and Computer Software , vol.29 , Issue.4 , pp. 228-237
    • Petrovskiy, M.I.1
  • 295
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R. Ensemble based systems in decision making. IEEE Circuits System Magazine 6, 3 (2006), 21–45.
    • (2006) IEEE Circuits System Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 299
    • 58349122797 scopus 로고    scopus 로고
    • PhD thesis, School of Computer Science and Egineering, University of New South Wales, November
    • Prayote, A. Knowledge Based Anomaly Detection. PhD thesis, School of Computer Science and Egineering, University of New South Wales, November 2007.
    • (2007) Knowledge Based Anomaly Detection
    • Prayote, A.1
  • 301
    • 0036361164 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for fast projective clustering
    • New York, USA, ACM
    • Procopiue, C. M., Jones, M., Agarwal, P. K., and Murali, T. M. A Monte Carlo algorithm for fast projective clustering. In ACM SIGMOD’02 (New York, USA, 2002), ACM, pp. 418–427.
    • (2002) ACM SIGMOD’02 , pp. 418-427
    • Procopiue, C.M.1    Jones, M.2    Agarwal, P.K.3    Murali, T.M.4
  • 302
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F. J., and Fawcett, T. Robust classification for imprecise environments. Machine Learning 42, 3 (2001), 203– 231.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.J.1    Fawcett, T.2
  • 306
  • 307
    • 0003676885 scopus 로고
    • TR // Center for Research in Computing Technology, Harvard University
    • Rabin, M. Fingerprinting by Random Polynomials. TR // Center for Research in Computing Technology, Harvard University. 1981.
    • (1981) Fingerprinting by Random Polynomials
    • Rabin, M.1
  • 309
    • 33845591142 scopus 로고    scopus 로고
    • DDoS-resilient scheduling to counter application layer attacks under imperfect detection
    • Barcelona, Spain
    • Ranjan, S., Swaminathan, R., Uysal, M., and Knightly, E. DDoS-resilient scheduling to counter application layer attacks under imperfect detection. Proc. of IEEE INFOCOM, 2006, Barcelona, Spain, pp. 1–13.
    • (2006) Proc. of IEEE INFOCOM , pp. 1-13
    • Ranjan, S.1    Swaminathan, R.2    Uysal, M.3    Knightly, E.4
  • 311
    • 0033884858 scopus 로고    scopus 로고
    • Speaker verification using adapted Gaussian mixture models
    • Reynolds, D. A., Quatieri, T. F., and Dunn, R. B. Speaker verification using adapted Gaussian mixture models. Digital Signal Processing 10, 1-3 (2000), 19–41.
    • (2000) Digital Signal Processing , vol.10 , Issue.1-3 , pp. 19-41
    • Reynolds, D.A.1    Quatieri, T.F.2    Dunn, R.B.3
  • 313
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • February
    • Rokach, L. Ensemble-based classifiers. Artificial Intelligence Review 33, 1-2 (February 2010), 1–39.
    • (2010) Artificial Intelligence Review , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 315
    • 0002501061 scopus 로고
    • Two theorems of statistical separability in the perceptron
    • HM Stationary Office, London, National Physical Laboratory
    • Rosenblatt, F. Two theorems of statistical separability in the perceptron. In Proc. of the Symposium of Mechanization of Thought Processes (HM Stationary Office, London, 1959), National Physical Laboratory, pp. 421–456.
    • (1959) Proc. of the Symposium of Mechanization of Thought Processes , pp. 421-456
    • Rosenblatt, F.1
  • 316
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20, 1 (1987), 53–65.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.J.1
  • 318
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., Inza, I., and Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 19 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 319
    • 22044455069 scopus 로고    scopus 로고
    • Density based clustering in spatial databases: The algorithm gdbscan and its applications
    • Sander, J., Ester, M., Kriegel, H. P., and Xu, X. Density based clustering in spatial databases: The algorithm gdbscan and its applications. Data Mining and Knowledge Discovery 2, 2 (1998), 169–194.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.4
  • 320
    • 0033397980 scopus 로고    scopus 로고
    • Python: A programming language for software integration and development
    • Sanner, M., et al. Python: a programming language for software integration and development. Journal of Molecular Graph Model 17, 1 (1999), 57–61.
    • (1999) Journal of Molecular Graph Model , vol.17 , Issue.1 , pp. 57-61
    • Sanner, M.1
  • 321
    • 0032309057 scopus 로고    scopus 로고
    • Fuzzy-rough membership functions. In Proc. of the IEEE Int’nl Conference on Systems, Man and Cybernetics (San Diego, CA
    • October
    • Sarkar, M., and Yegnanarayana, B. Fuzzy-rough membership functions. In Proc. of the IEEE Int’nl Conference on Systems, Man and Cybernetics (San Diego, CA, USA, October 1998), vol. 2, pp. 2028–2033.
    • (1998) USA , vol.2 , pp. 2028-2033
    • Sarkar, M.1    Yegnanarayana, B.2
  • 325
    • 85086420396 scopus 로고    scopus 로고
    • Syntax vs. Semantics: Competing approaches to dynamic network intrusion detection
    • Scheirer, W., and Chuah, M. C. Syntax vs. semantics: Competing approaches to dynamic network intrusion detection. Int’nl Journal Security and Networks 3, 1 (December 2008), 24–35.
    • (2008) Int’nl Journal Security and Networks , vol.3 , Issue.1 , pp. 24-35
    • Scheirer, W.1    Chuah, M.C.2
  • 333
    • 77953137615 scopus 로고    scopus 로고
    • Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method
    • August
    • Shabtai, A., Kanonov, U., and Elovici, Y. Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method. Journal of System Software 83, 8 (August 2010), 1524–1537.
    • (2010) Journal of System Software , vol.83 , Issue.8 , pp. 1524-1537
    • Shabtai, A.1    Kanonov, U.2    Elovici, Y.3
  • 336
    • 0034565041 scopus 로고    scopus 로고
    • Click: A clustering algorithm with applications to gene expression analysis
    • AAAI Press
    • Sharan, R., and Shamir, R. Click: A clustering algorithm with applications to gene expression analysis. In Proc. of Intelligent System for Molecular Biology (2000), AAAI Press, pp. 307– 316.
    • (2000) Proc. of Intelligent System for Molecular Biology , pp. 307-316
    • Sharan, R.1    Shamir, R.2
  • 338
    • 85053978355 scopus 로고    scopus 로고
    • Ohio University, Athens
    • Shawn Ostermann. Tcptrace. Ohio University, Athens, http://www.tcptrace.org, 2009.
    • (2009) Tcptrace
    • Ostermann, S.1
  • 341
    • 1542386294 scopus 로고    scopus 로고
    • ISS RealSecure pushes past newer IDS players
    • Shipley, G. ISS RealSecure pushes past newer IDS players. Network Computing 10, 10 (1999), 95–111.
    • (1999) Network Computing , vol.10 , Issue.10 , pp. 95-111
    • Shipley, G.1
  • 342
    • 79959226587 scopus 로고    scopus 로고
    • A novel approach to detect network attacks using G-HMM-based temporal relations between internet protocol packets
    • Shon, T., Han, K., Park, J., and Chang, H. A novel approach to detect network attacks using G-HMM-based temporal relations between internet protocol packets. EURASIP Journal on Wireless Communications and Networking (2011), 1–14.
    • (2011) EURASIP Journal on Wireless Communications and Networking , pp. 1-14
    • Shon, T.1    Han, K.2    Park, J.3    Chang, H.4
  • 343
    • 34250801472 scopus 로고    scopus 로고
    • A hybrid machine learning approach to network anomaly detection
    • Shon, T., and Moon, J. A hybrid machine learning approach to network anomaly detection. Information Science 177 (2007), 3799–3821.
    • (2007) Information Science , vol.177 , pp. 3799-3821
    • Shon, T.1    Moon, J.2
  • 345
    • 77955209381 scopus 로고    scopus 로고
    • Outside the closed world: On using machine learning for network intrusion detection
    • Sommer, R., and Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proc. of the IEEE Symposium on Security and Privacy (2010), pp. 305– 316.
    • (2010) Proc. of the IEEE Symposium on Security and Privacy , pp. 305-316
    • Sommer, R.1    Paxson, V.2
  • 348
    • 77956210836 scopus 로고    scopus 로고
    • Competitive Overview of Statistical Anomaly Detection
    • Sorensen, S. Competitive Overview of Statistical Anomaly Detection. Juniper Networks, USA, 2004.
    • (2004) Juniper Networks, USA
    • Sorensen, S.1
  • 352
    • 0002880407 scopus 로고
    • Mining generalized association rules
    • Zurich, Switzerland
    • Srikant, R., and Agrawala, R. Mining generalized association rules. In Proc. of the 21st VLDB Conference, Zurich, Switzerland (1995), pp. 407–419.
    • (1995) Proc. of the 21St VLDB Conference , pp. 407-419
    • Srikant, R.1    Agrawala, R.2
  • 354
  • 357
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles — A knowledge reuse framework for combining multiple partitions
    • volume = 3, number =, month =, year = 2003, pages = 583–617, doi =, publisher =, address =
    • Strehl, A., and Ghosh, J. Cluster ensembles — A knowledge reuse framework for combining multiple partitions, journal = Journal of Machine Learning Research, volume = 3, number =, month =, year = 2003, pages = 583–617, doi =, publisher =, address =,.
    • Journal = Journal of Machine Learning Research
    • Strehl, A.1    Ghosh, J.2
  • 359
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • Sugumaran, V., Muralidharan, V., and Ramachandran, K. Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing. Mechanical Systems and Signal Processing 21, 2 (2007), 930–942.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.3
  • 362
    • 58549089680 scopus 로고    scopus 로고
    • Intrusion detection using fuzzy association rules
    • March
    • Tajbakhsh, A., Rahmati, M., and Mirzaei, A. Intrusion detection using fuzzy association rules. Applied Soft Computing 9, 2 (March 2009), 462–469.
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 462-469
    • Tajbakhsh, A.1    Rahmati, M.2    Mirzaei, A.3
  • 366
    • 1642475063 scopus 로고    scopus 로고
    • Resampling approach for anomaly detection in multispectral images
    • SPIE
    • Theiler, J., and Cai, D. M. Resampling approach for anomaly detection in multispectral images. In Proc. of SPIE (2003), vol. 5093, SPIE, pp. 230–240.
    • (2003) Proc. of SPIE , vol.5093 , pp. 230-240
    • Theiler, J.1    Cai, D.M.2
  • 367
    • 0043166339 scopus 로고    scopus 로고
    • Anomaly detection in IP networks
    • August
    • Thottan, M., and Ji, C. Anomaly detection in IP networks. IEEE Transactions on Signal Processing 51, 8 (August 2003), 2191–2204.
    • (2003) IEEE Transactions on Signal Processing , vol.51 , Issue.8 , pp. 2191-2204
    • Thottan, M.1    Ji, C.2
  • 368
    • 0036678783 scopus 로고    scopus 로고
    • Analysis of expression profile using fuzzy adaptive resonance theory
    • Tomida, S., Hanai, T., Honda, H., and Kobayashi, T. Analysis of expression profile using fuzzy adaptive resonance theory. Bioinformatics 18, 8 (2002), 1073–1083.
    • (2002) Bioinformatics , vol.18 , Issue.8 , pp. 1073-1083
    • Tomida, S.1    Hanai, T.2    Honda, H.3    Kobayashi, T.4
  • 370
    • 69349090629 scopus 로고    scopus 로고
    • A research using hybrid RBF/Elman neural networks for intrusion detection system secure model
    • Tong, X., Wang, Z., and Yu, H. A research using hybrid RBF/Elman neural networks for intrusion detection system secure model. Computer Physics Communications 180, 10 (2009), 1795–1801.
    • (2009) Computer Physics Communications , vol.180 , Issue.10 , pp. 1795-1801
    • Tong, X.1    Wang, Z.2    Yu, H.3
  • 371
    • 0030128299 scopus 로고    scopus 로고
    • Feature extraction methods for character recognition — A survey
    • Trier, O. D., Jain, A., and Taxt, T. Feature extraction methods for character recognition — A survey. Pattern Recognition 29, 4 (1996), 641–662.
    • (1996) Pattern Recognition , vol.29 , Issue.4 , pp. 641-662
    • Trier, O.D.1    Jain, A.2    Taxt, T.3
  • 373
  • 376
    • 79956148065 scopus 로고    scopus 로고
    • Artificial immune system based on interval type-2 fuzzy set paradigm
    • Visconti, A., and Tahayori, H. Artificial immune system based on interval type-2 fuzzy set paradigm. Applied Soft Computing 11, 6 (September 2011), 4055–4063.
    • (2011) Applied Soft Computing , vol.11 , Issue.6 , pp. 4055-4063
    • Visconti, A.1    Tahayori, H.2
  • 377
    • 70350130556 scopus 로고    scopus 로고
    • A fast hybrid density based clustering method for large datasets
    • Viswanath, P., and Babu, V. S. A fast hybrid density based clustering method for large datasets. Pattern Recognition Letters 30 (2009), 1477–1488.
    • (2009) Pattern Recognition Letters , vol.30 , pp. 1477-1488
    • Viswanath, P.1    Babu, V.S.2
  • 379
    • 84994158589 scopus 로고    scopus 로고
    • Sting: A statistical information grid approach to spatial data mining
    • Athens, Greece
    • Wang, W., Yang, J., and Munz, R. R. Sting: A statistical information grid approach to spatial data mining. In Proc. of VLDB97 (Athens, Greece, 1997), pp. 186–195.
    • (1997) Proc. of VLDB97 , pp. 186-195
    • Wang, W.1    Yang, J.2    Munz, R.R.3
  • 386
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: A review
    • Wu, S. X., and Banzhaf, W. The use of computational intelligence in intrusion detection systems: A review. Applied Soft Computing 10, 1 (January 2010), 1–35.
    • (2010) Applied Soft Computing , vol.10 , Issue.1 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 391
    • 61449135082 scopus 로고    scopus 로고
    • Monitoring the application-layer DDoS attacks for popular websites
    • Xie, Y., and Yu, S.-Z. Monitoring the application-layer DDoS attacks for popular websites. IEEE/ACM Transactions on Networking 17, 1 (2009), 15–25.
    • (2009) IEEE/ACM Transactions on Networking , vol.17 , Issue.1 , pp. 15-25
    • Xie, Y.1    Yu, S.-Z.2
  • 392
    • 77649270156 scopus 로고    scopus 로고
    • Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies
    • Xu, X. Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies. Applied Soft Computing 10, 3 (2010), 859–867.
    • (2010) Applied Soft Computing , vol.10 , Issue.3 , pp. 859-867
    • Xu, X.1
  • 393
    • 33846443005 scopus 로고    scopus 로고
    • A non-parametric clustering algorithm for knowledge discovery in large spatial datasets
    • IEEE Press
    • Xu, X., Ester, M., Kriegel, H. P., and Sander, J. A non-parametric clustering algorithm for knowledge discovery in large spatial datasets. In Proc. on Data Engineering (1998), IEEE Press.
    • (1998) Proc. on Data Engineering
    • Xu, X.1    Ester, M.2    Kriegel, H.P.3    Sander, J.4
  • 394
    • 22844454592 scopus 로고    scopus 로고
    • A fast parallel clustering algorithm for large spatial databases
    • Xu, X., Jager, J., and Kriegel, H. P. A fast parallel clustering algorithm for large spatial databases. Data Mining and Knowledge Discovery 3, 3 (1999), 263–290.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.3 , pp. 263-290
    • Xu, X.1    Jager, J.2    Kriegel, H.P.3
  • 396
    • 3543125360 scopus 로고    scopus 로고
    • On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
    • Yamanishi, K., Takeuchi, J. I., Williams, G., and Milne, P. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery 8 (2004), 275–300.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 275-300
    • Yamanishi, K.1    Takeuchi, J.I.2    Williams, G.3    Milne, P.4
  • 397
    • 33750541660 scopus 로고    scopus 로고
    • Clustering and classification based anomaly detection
    • Yang, H., Xie, F., and Lu, Y. Clustering and classification based anomaly detection. Fuzzy Systems and Knowledge Discovery 4223/2006 (2006), 1082–1091.
    • (2006) Fuzzy Systems and Knowledge Discovery , vol.4223 , Issue.2006 , pp. 1082-1091
    • Yang, H.1    Xie, F.2    Lu, Y.3
  • 399
  • 403
    • 0036575252 scopus 로고    scopus 로고
    • First-order versus high-order stochastic models for computer intrusion detection
    • Ye, N., Ehiabor, T., and Zhang, Y. First-order versus high-order stochastic models for computer intrusion detection. Quality and Reliability Engineering International 18, 3 (2002), 243–250.
    • (2002) Quality and Reliability Engineering International , vol.18 , Issue.3 , pp. 243-250
    • Ye, N.1    Ehiabor, T.2    Zhang, Y.3
  • 405
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • Yeung, D. Y. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition 36 (2003), 229–243.
    • (2003) Pattern Recognition , vol.36 , pp. 229-243
    • Yeung, D.Y.1
  • 407
    • 0041328214 scopus 로고    scopus 로고
    • K*-means: A new generalized k-means clustering algorithm
    • Yiu-Ming, C. k*-means: A new generalized k-means clustering algorithm. Pattern Recognition Letters 24, 15 (2003), 2883–2893.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.15 , pp. 2883-2893
    • Yiu-Ming, C.1
  • 409
    • 33745771946 scopus 로고    scopus 로고
    • Heterogenous clustering ensemble method for combining different cluster results
    • Berlin, Springer Verlag
    • Yoon, H. S., Ahn, S. Y., Lee, S. H., Cho, S. B., and Kim, J. H. Heterogenous clustering ensemble method for combining different cluster results. In LNCS Proc BioDM’06 (Berlin, 2006), vol. 3916, Springer Verlag, pp. 82–92.
    • (2006) LNCS Proc BioDM’06 , vol.3916 , pp. 82-92
    • Yoon, H.S.1    Ahn, S.Y.2    Lee, S.H.3    Cho, S.B.4    Kim, J.H.5
  • 411
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Yu, L., and Liu, H. Feature selection for high-dimensional data: A fast correlation-based filter solution. In Machine Learning-Int’nl Workshop (2003), vol. 20, p. 856.
    • (2003) Machine Learning-Int’nl Workshop , vol.20 , pp. 856
    • Yu, L.1    Liu, H.2
  • 412
    • 84856667841 scopus 로고    scopus 로고
    • A nonparametric adaptive CUSUM method and its application in network anomaly detection
    • Yu, M. A nonparametric adaptive CUSUM method and its application in network anomaly detection. Int’nl Journal of Advancements in Computing Technology 4, 1 (2012), 280–288.
    • (2012) Int’nl Journal of Advancements in Computing Technology , vol.4 , Issue.1 , pp. 280-288
    • Yu, M.1
  • 415
    • 0028385414 scopus 로고
    • Fuzzy logic, neural networks, and soft computing
    • Zadeh, L. A. Fuzzy logic, neural networks, and soft computing. Communications, ACM 37, 3 (March 1994), 77–84.
    • (1994) Communications, ACM , vol.37 , Issue.3 , pp. 77-84
    • Zadeh, L.A.1
  • 416
    • 0002524511 scopus 로고    scopus 로고
    • Role of soft computing and fuzzy logic in the conception, design and development of information/intelligent systems
    • Zadeh, L. A. Role of soft computing and fuzzy logic in the conception, design and development of information/intelligent systems. Lecture Notes in Computer Science 695 (1998), 1–9.
    • (1998) Lecture Notes in Computer Science , vol.695 , pp. 1-9
    • Zadeh, L.A.1
  • 418
    • 15944375471 scopus 로고    scopus 로고
    • Intrusion detection using hierarchical neural networks
    • Zhang, C., Jiang, J., and Kamel, M. Intrusion detection using hierarchical neural networks. Pattern Recognition Letters 26, 6 (May 2005), 779–791.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.6 , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3
  • 419
    • 77950657888 scopus 로고    scopus 로고
    • A mixed unsupervised clustering-based intrusion detection. In Proc. of 3rd Int’nl Conference on Genetic and Evolutionary Computing (Gulin, China, October 2009)
    • Zhang, C., Zhang, G., and Sun, S. A mixed unsupervised clustering-based intrusion detection. In Proc. of 3rd Int’nl Conference on Genetic and Evolutionary Computing (Gulin, China, October 2009), IEEE Computer Society.
    • IEEE Computer Society.
    • Zhang, C.1    Zhang, G.2    Sun, S.3
  • 422
  • 426
    • 84856114036 scopus 로고    scopus 로고
    • Anomaly detection with score functions based on nearest neighbor graphs
    • Vancouver, British Columbia, Canada, December, Curran Associates, Inc
    • Zhao, M., and Saligrama, V. Anomaly detection with score functions based on nearest neighbor graphs. In Proc. of the 23rd Annual Conference on Neural Information Processing Systems (NIPS) (Vancouver, British Columbia, Canada, December 2009), vol. 22, Curran Associates, Inc., pp. 2250–2258.
    • (2009) Proc. of the 23Rd Annual Conference on Neural Information Processing Systems (NIPS) , vol.22 , pp. 2250-2258
    • Zhao, M.1    Saligrama, V.2
  • 427
    • 79959299204 scopus 로고    scopus 로고
    • Decision-level fusion model of multi-source intrusion detection alerts
    • Zhi-dong, L., Wu, Y., Wei, W., and Da-peng, M. Decision-level fusion model of multi-source intrusion detection alerts. Journal on Communications 32, 5 (2011), 121–128.
    • (2011) Journal on Communications , vol.32 , Issue.5 , pp. 121-128
    • Zhi-Dong, L.1    Wu, Y.2    Wei, W.3    Da-Peng, M.4
  • 430
    • 22644449321 scopus 로고    scopus 로고
    • A fast algorithm for density based clustering in large database
    • Springer Verlag
    • Zhou, B., Cheung, D. W., and Kao, B. A fast algorithm for density based clustering in large database. In Proc. of 3rd PAKDD (1999), Springer Verlag, pp. 338–349.
    • (1999) Proc. of 3Rd PAKDD , pp. 338-349
    • Zhou, B.1    Cheung, D.W.2    Kao, B.3
  • 431
    • 84946216263 scopus 로고    scopus 로고
    • Utilizing statistical characteristics of N-grams for intrusion detection
    • USA, IEEE CS
    • Zhuowei, L., Das, A., and Nandi, S. Utilizing statistical characteristics of N-grams for intrusion detection. In Proc. of the International Conference on Cyberworlds (USA, 2003), IEEE CS, pp. 486–494.
    • (2003) Proc. of the International Conference on Cyberworlds , pp. 486-494
    • Zhuowei, L.1    Das, A.2    Nandi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.