메뉴 건너뛰기




Volumn 6640 LNCS, Issue PART 1, 2011, Pages 40-51

UNADA: Unsupervised network anomaly detection using sub-space outliers ranking

Author keywords

Abnormality Ranking; Evidence Accumulation; Outliers Detection; Sub Space Clustering; Unsupervised Anomaly Detection

Indexed keywords

ABNORMALITY RANKING; EVIDENCE ACCUMULATION; OUTLIERS DETECTION; SUB-SPACES; UNSUPERVISED ANOMALY DETECTION; ABNORMALITY RANKINGS; SUB-SPACE CLUSTERING;

EID: 79956035662     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-20757-0_4     Document Type: Conference Paper
Times cited : (38)

References (17)
  • 3
  • 4
    • 84878737375 scopus 로고    scopus 로고
    • Combining filtering and statistical methods for anomaly detection
    • Soule, A., et al.: Combining Filtering and Statistical Methods for Anomaly Detection. In: Proc. ACM IMC (2005)
    • (2005) Proc. ACM IMC
    • Soule, A.1
  • 5
    • 14944367082 scopus 로고    scopus 로고
    • Sketch-based change detection: Methods evaluation and applications
    • Krishnamurthy, B., et al.: Sketch-based Change Detection: Methods, Evaluation, and Applications. In: Proc. ACM IMC (2003)
    • (2003) Proc. ACM IMC
    • Krishnamurthy, B.1
  • 6
    • 79956035468 scopus 로고    scopus 로고
    • Extracting hidden anomalies using sketch and non gaussian multi-resolution statistical detection procedures
    • Dewaele, G., et al.: Extracting Hidden Anomalies using Sketch and non Gaussian Multi-resolution Statistical Detection Procedures. In: Proc. LSAD (2007)
    • (2007) Proc. LSAD
    • Dewaele, G.1
  • 7
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain, A.K.: Data Clustering: 50 Years Beyond K-Means. Pattern Recognition Letters 31(8), 651-666 (2010)
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 8
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review. ACM SIGKDD Expl
    • Parsons, L., et al.: Subspace Clustering for High Dimensional Data: a Review. ACM SIGKDD Expl. Newsletter 6(1), 90-105 (2004)
    • (2004) Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1
  • 10
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
    • Kluwer Publishers Dordrecht
    • Eskin, E., et al.: A Geometric Framework for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. In: Applications of Data Mining in Computer Security. Kluwer Publishers, Dordrecht (2002)
    • (2002) Applications of Data Mining in Computer Security
    • Eskin, E.1
  • 11
    • 33746860935 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clustering
    • Leung, K., Leckie, C.: Unsupervised Anomaly Detection in Network Intrusion Detection Using Clustering. In: Proc. ACSC 2005 (2005)
    • (2005) Proc. ACSC 2005
    • Leung, K.1    Leckie, C.2
  • 13
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester, M., et al.: A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. ACM SIGKDD (1996)
    • (1996) Proc. ACM SIGKDD
    • Ester, M.1
  • 14
    • 33750283653 scopus 로고    scopus 로고
    • A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification
    • Williams, N., Zander, S., Armitage, G.: A Preliminary Performance Comparison of Five Machine Learning Algorithms for Practical IP Traffic Flow Classification. ACM SIGCOMM Computer Communication Review 36(5) (2006)
    • (2006) ACM SIGCOMM Computer Communication Review , vol.36 , Issue.5
    • Williams, N.1    Zander, S.2    Armitage, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.