메뉴 건너뛰기




Volumn 14, Issue 2, 2007, Pages 169-187

Clustering-based network intrusion detection

Author keywords

Classification techniques; Clustering algorithms; Network intrusion detection

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; DATA MINING; DISTRIBUTED DATABASE SYSTEMS; INTRUSION DETECTION; LEARNING SYSTEMS; TELECOMMUNICATION TRAFFIC;

EID: 34249896701     PISSN: 02185393     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218539307002568     Document Type: Article
Times cited : (88)

References (32)
  • 1
    • 27844550177 scopus 로고    scopus 로고
    • Parallel and distributed computing for cybersecurity
    • V. Kumar, Parallel and distributed computing for cybersecurity. IEEE Distributed Systems 6(10) 2005.
    • (2005) IEEE Distributed Systems , vol.6 , Issue.10
    • Kumar, V.1
  • 3
    • 38649129383 scopus 로고    scopus 로고
    • X. Zhu, Z. Huang and H. Zhou, Design of a, multi-agent based intelligent intrusion detection system, in Proceedings 1st International Symposium on Pervasive Computing and Applications (Urumqi, China, 2006) (IEEE Computer Society), pp. 290-295.
    • X. Zhu, Z. Huang and H. Zhou, Design of a, multi-agent based intelligent intrusion detection system, in Proceedings 1st International Symposium on Pervasive Computing and Applications (Urumqi, China, 2006) (IEEE Computer Society), pp. 290-295.
  • 6
    • 34547481825 scopus 로고    scopus 로고
    • T. M. Khoshgoftaar, C. Seiffert and N. Seliya., Labeling network event records foiintrusion detection in a, wireless lan, in Proceedings IEEE International Conference on Information Reuse and Integration (Waikoloa Village, HI) (IEEE Computer Society) (2006), pp. 200-206.
    • T. M. Khoshgoftaar, C. Seiffert and N. Seliya., Labeling network event records foiintrusion detection in a, wireless lan, in Proceedings IEEE International Conference on Information Reuse and Integration (Waikoloa Village, HI) (IEEE Computer Society) (2006), pp. 200-206.
  • 10
    • 0009900351 scopus 로고    scopus 로고
    • Anomaly detection over noisy data using learned probability distributions
    • San Francisco, CA
    • E. Eskin, Anomaly detection over noisy data using learned probability distributions, in Proc. 17th Int. Conf. Machine Learning (San Francisco, CA) (2000), pp. 255-262.
    • (2000) Proc. 17th Int. Conf. Machine Learning , pp. 255-262
    • Eskin, E.1
  • 12
    • 34249913133 scopus 로고    scopus 로고
    • N. Ye and X. Li, A scalable clustering technique for intrusion signature recognition, in Proc. 2nd IEEE SMC Information Assurance Workshop (2001), pp. 1-4.
    • N. Ye and X. Li, A scalable clustering technique for intrusion signature recognition, in Proc. 2nd IEEE SMC Information Assurance Workshop (2001), pp. 1-4.
  • 17
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J. D. Banfield and A. E. Raftery, Model-based Gaussian and non-Gaussian clustering, Biometrics 49(3) (1993) 803-821.
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 19
    • 0027632248 scopus 로고
    • Neural-Gas network for vector quantization and its application to time-series prediction
    • T. M. Martinetz, S. G. Berkovich and K. J. Schulten, Neural-Gas network for vector quantization and its application to time-series prediction, IEEE Trans. Neural Networks 4(4) (1993) 558-569.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 20
    • 84958625480 scopus 로고    scopus 로고
    • Path based pairwise data clustering with application to texture segmentation
    • B. Fischer, T. Zoller and J. M. Buhmann, Path based pairwise data clustering with application to texture segmentation, Lecture Notes in Computer Science 2134 (2001) 235-250.
    • (2001) Lecture Notes in Computer Science , vol.2134 , pp. 235-250
    • Fischer, B.1    Zoller, T.2    Buhmann, J.M.3
  • 21
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E.-H. Han and V. Kumar, Chameleon: Hierarchical clustering using dynamic modeling, IEEE Computer 32(8) (1999) 68-75.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 22
    • 0038163983 scopus 로고    scopus 로고
    • Dept. of Computer Science, University of Minnesota, May
    • G. Karypis, CLUTO -A Clustering Toolkit, Dept. of Computer Science, University of Minnesota, May 2002. http://www-users.cs.umn.edu/ ~karypis/cluto/.
    • (2002) CLUTO -A Clustering Toolkit
    • Karypis, G.1
  • 23
  • 24
    • 2142824230 scopus 로고    scopus 로고
    • Analyzing software measurement data with clustering techniques
    • S. Zhong, T. M. Khoshgoftaar and N. Seliya., Analyzing software measurement data with clustering techniques, IEEE Intelligent Systems 19(2) (2004) 20-27.
    • (2004) IEEE Intelligent Systems , vol.19 , Issue.2 , pp. 20-27
    • Zhong, S.1    Khoshgoftaar, T.M.2    Seliya, N.3
  • 26
    • 4644266514 scopus 로고    scopus 로고
    • A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • Technical report, University of California at Berkeley
    • J. A. Blimes, A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models, Technical report, University of California at Berkeley (1998).
    • (1998)
    • Blimes, J.A.1
  • 30
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Orlando, FL
    • A. H. Sung and S. Mukkamala, Identifying important features for intrusion detection using support vector machines and neural networks, in Proc. IEEE Symposium on Applications and the Internet (Orlando, FL) (2003), pp. 209-216.
    • (2003) Proc. IEEE Symposium on Applications and the Internet , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2
  • 32
    • 0002679222 scopus 로고    scopus 로고
    • Scalability for clustering algorithms revisited
    • F. Farnstrom, J. Lewis and C. Elkan, Scalability for clustering algorithms revisited, SIGKDD Explorations 2(1) (2000) 51-57.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 51-57
    • Farnstrom, F.1    Lewis, J.2    Elkan, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.