메뉴 건너뛰기




Volumn 32, Issue 10, 2005, Pages 2617-2634

Application of SVM and ANN for intrusion detection

Author keywords

Artificial neural networks; Intrusion detection; Support vector machine

Indexed keywords

COMPUTER CRIME; COMPUTER SOFTWARE; COMPUTER SYSTEM FIREWALLS; DATA MINING; DATA WAREHOUSES; INTELLECTUAL PROPERTY; INTERNET; NEURAL NETWORKS;

EID: 13544269338     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2004.03.019     Document Type: Article
Times cited : (346)

References (35)
  • 2
    • 0037411435 scopus 로고    scopus 로고
    • The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors
    • Joo D., Hong T., Han I. The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors. Expert Systems with Applications. 25:2003;69-75
    • (2003) Expert Systems with Applications , vol.25 , pp. 69-75
    • Joo, D.1    Hong, T.2    Han, I.3
  • 11
    • 0036321445 scopus 로고    scopus 로고
    • Use of K-nearest neighbor classifier for intrusion detection
    • Liao Y., Vemuri V.R. Use of. K -nearest neighbor classifier for intrusion detection Computers Security. 21:2002;439-448
    • (2002) Computers Security , vol.21 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 14
    • 0037105910 scopus 로고    scopus 로고
    • Intrusion detection techniques and approaches
    • Verwoerd T., Hunt R. Intrusion detection techniques and approaches. Computer Communications. 25:2002;1356-1365
    • (2002) Computer Communications , vol.25 , pp. 1356-1365
    • Verwoerd, T.1    Hunt, R.2
  • 16
    • 0037105913 scopus 로고    scopus 로고
    • Design and implementation of a decentralized prototype system for detecting distributed attacks
    • Ning P., Jajodia S., Want X.S. Design and implementation of a decentralized prototype system for detecting distributed attacks. Computer Communications. 25:2002;1374-1391
    • (2002) Computer Communications , vol.25 , pp. 1374-1391
    • Ning, P.1    Jajodia, S.2    Want, X.S.3
  • 21
    • 0030129318 scopus 로고    scopus 로고
    • A data reduction method for intrusion detection
    • Lam K.Y., Hui L., Chung S.L. A data reduction method for intrusion detection. Systems Software. 33:1996;101-108
    • (1996) Systems Software , vol.33 , pp. 101-108
    • Lam, K.Y.1    Hui, L.2    Chung, S.L.3
  • 22
    • 0027668428 scopus 로고
    • Statistical foundations of audit trail analysis for the detection of computer misuse
    • Helmer G., Liepins G. Statistical foundations of audit trail analysis for the detection of computer misuse. IEEE Transactions on Software Engineering. 19:1993;866-901
    • (1993) IEEE Transactions on Software Engineering , vol.19 , pp. 866-901
    • Helmer, G.1    Liepins, G.2
  • 23
    • 0034123868 scopus 로고    scopus 로고
    • Neural networks in business: Techniques and applications for the operations research
    • Smith K.A., Gupta J.N.D. Neural networks in business. techniques and applications for the operations research Computers & Operations Research. 27:2000;1023-1044
    • (2000) Computers & Operations Research , vol.27 , pp. 1023-1044
    • Smith, K.A.1    Gupta, J.N.D.2
  • 24
    • 0036604737 scopus 로고    scopus 로고
    • Estimation of all-terminal network reliability using an artificial neural network
    • Srivarre-Ratana C., Konak A., Smith A.E. Estimation of all-terminal network reliability using an artificial neural network. Computers & Operations Research. 29:2002;849-868
    • (2002) Computers & Operations Research , vol.29 , pp. 849-868
    • Srivarre-Ratana, C.1    Konak, A.2    Smith, A.E.3
  • 25
    • 0033230386 scopus 로고    scopus 로고
    • Predicting the success of nations at the Summer Olympics using neural networks
    • Condon E.M., Golden B.L., Wasil E.A. Predicting the success of nations at the Summer Olympics using neural networks. Computers & Operations Research. 26:1999;1243-1265
    • (1999) Computers & Operations Research , vol.26 , pp. 1243-1265
    • Condon, E.M.1    Golden, B.L.2    Wasil, E.A.3
  • 28
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery. 2:1998;1-47
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 1-47
    • Burges, C.J.C.1
  • 30
    • 0036007085 scopus 로고    scopus 로고
    • Prediction of protein structural classes by support vector machines
    • Cai Y.-D., Lin X.-J., Xu X.-B., Chou K.-C. Prediction of protein structural classes by support vector machines. Computers and Chemistry. 26:2002;293-296
    • (2002) Computers and Chemistry , vol.26 , pp. 293-296
    • Cai, Y.-D.1    Lin, X.-J.2    Xu, X.-B.3    Chou, K.-C.4
  • 31
    • 0035676247 scopus 로고    scopus 로고
    • Support vector machines for identifying organisms - A comparison with strongly partitioned radial basis function networks
    • Morris C.W., Autret A., Boddy L. Support vector machines for identifying organisms - a comparison with strongly partitioned radial basis function networks. Ecological Modeling. 146:2001;57-67
    • (2001) Ecological Modeling , vol.146 , pp. 57-67
    • Morris, C.W.1    Autret, A.2    Boddy, L.3
  • 32
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F.E.H., Cao L. Application of support vector machines in financial time series forecasting. Omega. 29:2001;309-317
    • (2001) Omega , vol.29 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.