메뉴 건너뛰기




Volumn 53, Issue 6, 2009, Pages 864-881

McPAD: A multiple classifier system for accurate payload-based anomaly detection

Author keywords

Anomaly detection; Multiple classifiers; Network intrusion detection; One class SVM; Shell code attacks

Indexed keywords

BLENDING; CLASSIFIERS; COMPUTER CRIME; INTERNET; OBJECT RECOGNITION; SUPPORT VECTOR MACHINES;

EID: 61749083929     PISSN: 13891286     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.comnet.2008.11.011     Document Type: Article
Times cited : (225)

References (37)
  • 1
    • 12844286929 scopus 로고    scopus 로고
    • The shellcode generation
    • Arce I. The shellcode generation. IEEE Security and Privacy 2 5 (2004) 72-76
    • (2004) IEEE Security and Privacy , vol.2 , Issue.5 , pp. 72-76
    • Arce, I.1
  • 3
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 7 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 6
    • 27244448490 scopus 로고    scopus 로고
    • Network intrusion detection by a multi-stage classification system
    • MCS
    • L.P. Cordella, A. Limongiello, C. Sansone, Network intrusion detection by a multi-stage classification system, in: Multiple Classifier Systems (MCS), 2004, pp. 324-333.
    • (2004) Multiple Classifier Systems , pp. 324-333
    • Cordella, L.P.1    Limongiello, A.2    Sansone, C.3
  • 7
    • 21844435105 scopus 로고    scopus 로고
    • Confidence intervals for the area under the roc curve
    • Advances in Neural Information Processing Systems
    • C. Cortes, M. Mohri, Confidence intervals for the area under the roc curve, in: NIPS 2004: Advances in Neural Information Processing Systems, 2004.
    • (2004) NIPS
    • Cortes, C.1    Mohri, M.2
  • 9
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • Dhillon I.S., Mallela S., and Kumar R. A divisive information-theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research 3 (2003) 1265-1287
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 12
    • 0141797880 scopus 로고    scopus 로고
    • A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data
    • Barbara D., and Jajodia S. (Eds), Kluwer
    • Eskin E., Arnold A., Prerau M., Portnoy L., and Stolfo S. A geometric framework for unsupervised anomaly detection: detecting intrusions in unlabeled data. In: Barbara D., and Jajodia S. (Eds). Applications of Data Mining in Computer Security (2002), Kluwer
    • (2002) Applications of Data Mining in Computer Security
    • Eskin, E.1    Arnold, A.2    Prerau, M.3    Portnoy, L.4    Stolfo, S.5
  • 15
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • Giacinto G., Perdisci R., Del Rio M., and Roli F. Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Information Fusion 9 1 (2008) 69-82
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 16
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • Giacinto G., Roli F., and Didaci L. Fusion of multiple classifiers for intrusion detection in computer networks. Pattern Recognition Letters 24 12 (2003) 1795-1803
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 21
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. How to represent texts in input space?
    • Leopold E., and Kindermann J. Text categorization with support vector machines. How to represent texts in input space?. Machine Learning 46 (2002) 423-444
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 23
    • 10844237614 scopus 로고    scopus 로고
    • An analysis of the 1999 darpa lincoln laboratory evaluation data for network anomaly detection
    • M.V. Mahoney, P.K. Chan, An analysis of the 1999 darpa lincoln laboratory evaluation data for network anomaly detection, in: Recent Advances in Intrusion Detection (RAID), 2003.
    • (2003) Recent Advances in Intrusion Detection (RAID)
    • Mahoney, M.V.1    Chan, P.K.2
  • 24
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory. ACM Transactions on Information and System Security 3 4 (2000) 262-294
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 25
    • 0034270431 scopus 로고    scopus 로고
    • Defending yourself: The role of intrusion detection systems
    • McHugh J., Christie A., and Allen J. Defending yourself: The role of intrusion detection systems. IEEE Software (2000) 42-51
    • (2000) IEEE Software , pp. 42-51
    • McHugh, J.1    Christie, A.2    Allen, J.3
  • 29
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 34 1 (2002) 1-47
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.