메뉴 건너뛰기




Volumn 10, Issue 3, 2010, Pages 859-867

Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies

Author keywords

Anomaly detection; Computer security; Learning prediction; Markov reward processes; Reinforcement learning; Temporal difference

Indexed keywords

ANOMALY DETECTION; ANOMALY DETECTION METHODS; ANOMALY DETECTION MODELS; APPLICATION DOMAINS; BEHAVIOR PATTERNS; COMPUTER SECURITY; CYBER-ATTACKS; DETECTION ACCURACY; HOST COMPUTERS; LABELED TRAINING DATA; LEARNING PREDICTION; MACHINE LEARNING METHODS; MARKOV REWARD PROCESS; MARKOV REWARD PROCESS MODEL; MULTI-STAGE; OPEN PROBLEMS; PREDICTION ACCURACY; RESEARCH AREAS; REWARD FUNCTION; SEQUENTIAL DATA; SYSTEM CALLS; TD-LEARNING; TEMPORAL DIFFERENCE LEARNING; VALUE FUNCTIONS;

EID: 77649270156     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2009.10.003     Document Type: Article
Times cited : (52)

References (29)
  • 3
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla N.V., Japkowicz N., and Kotcz A. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6 1 (2004) 1-6
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 6
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: a data mining approach
    • Lee W., Stolfo S.J., and Mok K.W. Adaptive intrusion detection: a data mining approach. Artificial Intelligence Review 14 6 (2000) 533-567
    • (2000) Artificial Intelligence Review , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 10
    • 26944437843 scopus 로고    scopus 로고
    • Adaptive network intrusion detection method based on PCA and support vector machines, ADMA 2005, Lecture Notes in Artificial Intelligence
    • X. Xu, X.N. Wang, Adaptive network intrusion detection method based on PCA and support vector machines, ADMA 2005, Lecture Notes in Artificial Intelligence, LNAI 3584 (2005) 696-703.
    • (2005) LNAI , vol.3584 , pp. 696-703
    • Xu, X.1    Wang, X.N.2
  • 12
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • Yeung D.Y., and Ding Y.X. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition 36 (2003) 229-243
    • (2003) Pattern Recognition , vol.36 , pp. 229-243
    • Yeung, D.Y.1    Ding, Y.X.2
  • 13
    • 1942436335 scopus 로고    scopus 로고
    • Robustness of the Markov-Chain model for cyber-attack detection
    • Ye N., Zhang Y., and Borror C.M. Robustness of the Markov-Chain model for cyber-attack detection. IEEE Transactions on Reliability 53 1 (2004) 116-123
    • (2004) IEEE Transactions on Reliability , vol.53 , Issue.1 , pp. 116-123
    • Ye, N.1    Zhang, Y.2    Borror, C.M.3
  • 16
    • 6344255762 scopus 로고    scopus 로고
    • Next generation intrusion detection: autonomous reinforcement learning of network attacks
    • Cannady J. Next generation intrusion detection: autonomous reinforcement learning of network attacks. 23th National Information Systems Security Conference (2000)
    • (2000) 23th National Information Systems Security Conference
    • Cannady, J.1
  • 17
    • 77649275039 scopus 로고    scopus 로고
    • http://www.cs.unm.edu/∼immsec/data-sets.htm.
  • 19
    • 33847202724 scopus 로고
    • Learning to predict by the method of temporal differences
    • Sutton R. Learning to predict by the method of temporal differences. Machine Learning 3 1 (1988) 9-44
    • (1988) Machine Learning , vol.3 , Issue.1 , pp. 9-44
    • Sutton, R.1
  • 20
    • 0032313923 scopus 로고    scopus 로고
    • Intrusion detection using sequences of systems call
    • Hofmeyr S., et al. Intrusion detection using sequences of systems call. Journal of Computer Security 6 (1998) 151-180
    • (1998) Journal of Computer Security , vol.6 , pp. 151-180
    • Hofmeyr, S.1
  • 22
    • 0031143730 scopus 로고    scopus 로고
    • An analysis of temporal difference learning with function approximation
    • Tsitsiklis J.N., and Roy B.V. An analysis of temporal difference learning with function approximation. IEEE Transactions on Automatic Control 42 5 (1997) 674-690
    • (1997) IEEE Transactions on Automatic Control , vol.42 , Issue.5 , pp. 674-690
    • Tsitsiklis, J.N.1    Roy, B.V.2
  • 23
    • 0036832950 scopus 로고    scopus 로고
    • Technical update: least-squares temporal difference learning
    • Boyan J.A. Technical update: least-squares temporal difference learning. Machine Learning 49 (2002) 233-246
    • (2002) Machine Learning , vol.49 , pp. 233-246
    • Boyan, J.A.1
  • 25
    • 24944517527 scopus 로고    scopus 로고
    • Learning classifiers for misuse detection using a bag of system calls representation
    • P. Kantor et al, Eds, ISI
    • D.K. Kang, D. Fuller, V. Honavar, Learning classifiers for misuse detection using a bag of system calls representation, in: P. Kantor et al. (Eds.), ISI 2005, Lecture Notes in Computer Science, 3495 (2005) 511-516.
    • (2005) Lecture Notes in Computer Science , vol.3495 , pp. 511-516
    • Kang, D.K.1    Fuller, D.2    Honavar, V.3
  • 28
    • 58549089680 scopus 로고    scopus 로고
    • Mohammad Rahmati, and Abdolreza Mirzaei, intrusion detection using fuzzy association rules
    • Tajbakhsh A. Mohammad Rahmati, and Abdolreza Mirzaei, intrusion detection using fuzzy association rules. Applied Soft Computing 9 2 (2009) 462-469
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 462-469
    • Tajbakhsh, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.