메뉴 건너뛰기




Volumn 5093, Issue , 2003, Pages 230-240

Resampling Approach for Anomaly Detection in Multispectral Images

Author keywords

Anomaly detection; Machine learning; Multispectral imagery

Indexed keywords

ANOMALY DETECTION; AUTOMATED TARGET RECOGNITION (ATR); MULTISPECTRAL IMAGERY;

EID: 1642475063     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.487069     Document Type: Conference Paper
Times cited : (55)

References (19)
  • 3
    • 1642537981 scopus 로고    scopus 로고
    • note
    • d. But this level of formality does not serve our purposes.
  • 4
    • 1642537984 scopus 로고    scopus 로고
    • note
    • Actually, it is only necessary that s(x) = h(Q(x)/P(x)) where h is a monotonic function. This looseness in the definition of optimal s(x) suggests a strategy for designing sub-optimal anomaly detectors when - as is the case - both P(x) and Q(x) are not known. One chooses s(x) to measure some quantity, like brightness, or red-ness, or smoothness, that describes a data point x and then calibrates s(x) against normal data. This provides an "anomaly" detector that is sensitive to the desired property. Of course, the problem with this approach is that the very nature of an anomalies makes the identification of their properties formally impossible. Informally, however, there may be times when this approach is useful.
  • 7
    • 0031208638 scopus 로고    scopus 로고
    • Learning distributions by their density levels: A paradigm for learning without a teacher
    • S. Ben-David and M. Lindenbaum, "Learning distributions by their density levels: A paradigm for learning without a teacher," J. Computer and System Sciences 55, pp. 171-182, 1997.
    • (1997) J. Computer and System Sciences , vol.55 , pp. 171-182
    • Ben-David, S.1    Lindenbaum, M.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining and Knowledge Discovery 2, pp. 121-167, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 0001986205 scopus 로고    scopus 로고
    • Data domain description by support vectors
    • M. Verleysen, ed., D. Facto Press, Brussels
    • D. Tax and R. Duin, "Data domain description by support vectors," in Proc. ESANN99, M. Verleysen, ed., pp. 251-256, D. Facto Press, (Brussels), 1999.
    • (1999) Proc. ESANN99 , pp. 251-256
    • Tax, D.1    Duin, R.2
  • 10
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • D. Tax and R. Duin, "Uniform object generation for optimizing one-class classifiers," J. Machine Learning Res. 2, pp. 155-173, 2002.
    • (2002) J. Machine Learning Res. , vol.2 , pp. 155-173
    • Tax, D.1    Duin, R.2
  • 11
    • 84958774078 scopus 로고    scopus 로고
    • Kernel whitening for one-class classification
    • Pattern Recognition with Support Vector Machines, S.-W. Lee and A. Verri, eds., Springer Verlag, Berlin
    • D. Tax and P. Juszczak, "Kernel whitening for one-class classification," in Pattern Recognition with Support Vector Machines, S.-W. Lee and A. Verri, eds., vol. 2388 of Lecture Notes in Computer Science, pp. 40-52, Springer Verlag, (Berlin), 2002.
    • (2002) Lecture Notes in Computer Science , vol.2388 , pp. 40-52
    • Tax, D.1    Juszczak, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.