-
1
-
-
0036477310
-
Comparison of GENIE and conventional supervised classifiers for multispectral image feature extraction
-
N. R. Harvey, J. Theiler, S. P. Brumby, S. Perkins, J. J. Szymanski, J. J. Bloch, R. B. Porter, M. Galassi, and A. C. Young, "Comparison of GENIE and conventional supervised classifiers for multispectral image feature extraction," IEEE Trans. Geosci. and Remote Sens. 40, pp. 393-404, 2002.
-
(2002)
IEEE Trans. Geosci. and Remote Sens.
, vol.40
, pp. 393-404
-
-
Harvey, N.R.1
Theiler, J.2
Brumby, S.P.3
Perkins, S.4
Szymanski, J.J.5
Bloch, J.J.6
Porter, R.B.7
Galassi, M.8
Young, A.C.9
-
3
-
-
1642537981
-
-
note
-
d. But this level of formality does not serve our purposes.
-
-
-
-
4
-
-
1642537984
-
-
note
-
Actually, it is only necessary that s(x) = h(Q(x)/P(x)) where h is a monotonic function. This looseness in the definition of optimal s(x) suggests a strategy for designing sub-optimal anomaly detectors when - as is the case - both P(x) and Q(x) are not known. One chooses s(x) to measure some quantity, like brightness, or red-ness, or smoothness, that describes a data point x and then calibrates s(x) against normal data. This provides an "anomaly" detector that is sensitive to the desired property. Of course, the problem with this approach is that the very nature of an anomalies makes the identification of their properties formally impossible. Informally, however, there may be times when this approach is useful.
-
-
-
-
7
-
-
0031208638
-
Learning distributions by their density levels: A paradigm for learning without a teacher
-
S. Ben-David and M. Lindenbaum, "Learning distributions by their density levels: A paradigm for learning without a teacher," J. Computer and System Sciences 55, pp. 171-182, 1997.
-
(1997)
J. Computer and System Sciences
, vol.55
, pp. 171-182
-
-
Ben-David, S.1
Lindenbaum, M.2
-
8
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining and Knowledge Discovery 2, pp. 121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
9
-
-
0001986205
-
Data domain description by support vectors
-
M. Verleysen, ed., D. Facto Press, Brussels
-
D. Tax and R. Duin, "Data domain description by support vectors," in Proc. ESANN99, M. Verleysen, ed., pp. 251-256, D. Facto Press, (Brussels), 1999.
-
(1999)
Proc. ESANN99
, pp. 251-256
-
-
Tax, D.1
Duin, R.2
-
10
-
-
0013372968
-
Uniform object generation for optimizing one-class classifiers
-
D. Tax and R. Duin, "Uniform object generation for optimizing one-class classifiers," J. Machine Learning Res. 2, pp. 155-173, 2002.
-
(2002)
J. Machine Learning Res.
, vol.2
, pp. 155-173
-
-
Tax, D.1
Duin, R.2
-
11
-
-
84958774078
-
Kernel whitening for one-class classification
-
Pattern Recognition with Support Vector Machines, S.-W. Lee and A. Verri, eds., Springer Verlag, Berlin
-
D. Tax and P. Juszczak, "Kernel whitening for one-class classification," in Pattern Recognition with Support Vector Machines, S.-W. Lee and A. Verri, eds., vol. 2388 of Lecture Notes in Computer Science, pp. 40-52, Springer Verlag, (Berlin), 2002.
-
(2002)
Lecture Notes in Computer Science
, vol.2388
, pp. 40-52
-
-
Tax, D.1
Juszczak, P.2
-
12
-
-
84898941932
-
Support vector method of novelty detection
-
S. A. Solla, T. K. Leen, and K.-R. Mller, eds., MIT Press
-
B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt, "Support vector method of novelty detection," in Advances in Neural Information Processing Systems, S. A. Solla, T. K. Leen, and K.-R. Mller, eds., vol. 12, pp. 582-588, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 582-588
-
-
Schölkopf, B.1
Williamson, R.2
Smola, A.3
Shawe-Taylor, J.4
Platt, J.5
-
13
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural Computation 13, pp. 1443-1471, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
14
-
-
46249099027
-
-
MIT Press, Cambridge, MA
-
B. Schölkopf and A. J. Smola, Learning with Kernels : Support Vector Machines, Regularization, Optimization, and Beyond., MIT Press, Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
15
-
-
0003684449
-
-
Springer-Verlag, New York
-
T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, New York, 2001.
-
(2001)
Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
16
-
-
0001161118
-
Machine learning with data dependent hypothesis classes
-
A. Cannon, J. M. Ettinger, D. Hush, and C. Scovel, "Machine learning with data dependent hypothesis classes," J. Machine Learning Res 2, pp. 335-358, 2002.
-
(2002)
J. Machine Learning Res
, vol.2
, pp. 335-358
-
-
Cannon, A.1
Ettinger, J.M.2
Hush, D.3
Scovel, C.4
-
17
-
-
1642578561
-
Simple classifiers
-
A. Cannon, J. Howse, D. Hush, and C. Scovel, "Simple classifiers," Submitted to: IEEE Trans. Neural Networks, 2003.
-
(2003)
IEEE Trans. Neural Networks
-
-
Cannon, A.1
Howse, J.2
Hush, D.3
Scovel, C.4
-
18
-
-
1642578559
-
Simple classifiers from data dependent hypothesis classes
-
A. Cannon, J. Howse, D. Hush, and C. Scovel, "Simple classifiers from data dependent hypothesis classes," Submitted to: International Conference on Machine Learning, 2003.
-
(2003)
International Conference on Machine Learning
-
-
Cannon, A.1
Howse, J.2
Hush, D.3
Scovel, C.4
|