메뉴 건너뛰기




Volumn 42, Issue 3, 2001, Pages 203-231

Robust classification for imprecise environments

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL GEOMETRY; DECISION THEORY; LEARNING SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION; PROBLEM SOLVING; SENSITIVITY ANALYSIS;

EID: 0035283313     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007601015854     Document Type: Article
Times cited : (1008)

References (40)
  • 1
    • 0030235637 scopus 로고    scopus 로고
    • Error reduction through learning multiple descriptions
    • Ali, K. M. & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions. Machine Learning, 24(3), 173-202.
    • (1996) Machine Learning , vol.24 , Issue.3 , pp. 173-202
    • Ali, K.M.1    Pazzani, M.J.2
  • 3
    • 0022500965 scopus 로고
    • The use of ROC curves in test performance evaluation
    • Beck, J. R. & Schultz, E. K. (1986). The use of ROC curves in test performance evaluation. Arch Pathol Lab Med, 110, 13-20.
    • (1986) Arch Pathol Lab Med , vol.110 , pp. 13-20
    • Beck, J.R.1    Schultz, E.K.2
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(1), 1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.1 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0026405773 scopus 로고
    • A rule-learning program in high energy physics event classification
    • Clearwater, S. & Stern, E. (1991). A rule-learning program in high energy physics event classification. Comp Physics Comm, 67, 159-182.
    • (1991) Comp Physics Comm , vol.67 , pp. 159-182
    • Clearwater, S.1    Stern, E.2
  • 12
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895-1924.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 14
    • 0031269184 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple bayesian classifier
    • Domingos, P. & Pazzani, M. (1997). Beyond independence: Conditions for the optimality of the simple bayesian classifier. Machine Learning, 29, 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 15
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • A. Prieditis & S. Russell (Eds.), San Francisco: Morgan Kaufmann
    • Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (pp. 194-202). San Francisco: Morgan Kaufmann.
    • (1995) Proceedings of the Twelfth International Conference on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 17
    • 0004080666 scopus 로고
    • Signal Detection Theory and ROC Analysis
    • New York: Academic Press
    • Egan, J. P. (1975). Signal Detection Theory and ROC Analysis. Series in Cognitition and Perception. New York: Academic Press.
    • (1975) Series in Cognitition and Perception
    • Egan, J.P.1
  • 18
    • 0012130233 scopus 로고    scopus 로고
    • Learning goal oriented bayesian networks for telecommunications risk management
    • L. Saitta (Ed.), San Francisco, CA: Morgan Kaufmann
    • Ezawa, K., Singh, M., & Norton, S. (1996). Learning goal oriented bayesian networks for telecommunications risk management. In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference on Machine Learning (pp. 139-147). San Francisco, CA: Morgan Kaufmann.
    • (1996) Proceedings of the Thirteenth International Conference on Machine Learning , pp. 139-147
    • Ezawa, K.1    Singh, M.2    Norton, S.3
  • 23
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A. & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 25
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • C. S. Mellish (Ed.), San Francisco: Morgan Kaufmann
    • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In C. S. Mellish (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (pp. 1137-1143). San Francisco: Morgan Kaufmann.
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 26
    • 0000210889 scopus 로고    scopus 로고
    • Data mining using script M signℒscript C sign++: A machine learning library in C++
    • Kohavi, R., Sommerfield, D., & Dougherty, J. (1997). Data mining using script M signℒscript C sign++: A machine learning library in C++. International Journal on Artificial Intelligence Tools, 6(4), 537-566. Available: http://www.sgi.com/ Technology/mlc.
    • (1997) International Journal on Artificial Intelligence Tools , vol.6 , Issue.4 , pp. 537-566
    • Kohavi, R.1    Sommerfield, D.2    Dougherty, J.3
  • 27
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., Holte, R., & Matwin, S. (1998). Machine learning for the detection of oil spills in satellite radar images. Machine Learning, 30(2/3), 195-215.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 29
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • Menlo Park, CA: AAAI Press
    • Provost, F. & Fawcett, T. (1997). Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (pp. 43-48). Menlo Park, CA: AAAI Press.
    • (1997) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 30
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • J. Shavlik (Ed.), San Francisco, CA: Morgan Kaufmann
    • Provost, F., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induction algorithms. In J. Shavlik (Ed.), Proceedings of the Fifteenth International Conference on Machine Learning (pp. 445-453). San Francisco, CA: Morgan Kaufmann.
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 32
    • 0032001170 scopus 로고    scopus 로고
    • Learning in the "Real World"
    • Saitta, L. & Neri, F. (1998). Learning in the "Real World". Machine Learning, 30, 133-163.
    • (1998) Machine Learning , vol.30 , pp. 133-163
    • Saitta, L.1    Neri, F.2
  • 33
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1, 317-328.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 317-328
    • Salzberg, S.L.1
  • 34
    • 0004320335 scopus 로고    scopus 로고
    • Note on the location of optimal classifiers in ROC space
    • Oxford University
    • Srinivasan, A. (1999). Note on the location of optimal classifiers in ROC space. Technical report PRG-TR-2-99, Oxford University.
    • (1999) Technical Report PRG-TR-2-99
    • Srinivasan, A.1
  • 36
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.1
  • 38
    • 0003558537 scopus 로고    scopus 로고
    • http://ai.iit.nrc.ca/bibliographies/ cost-sensitive.html
    • Turney, P. (1996). Cost sensitive learning bibliography. Available: http://ai.iit.nrc.ca/bibliographies/ cost-sensitive.html.
    • (1996) Cost Sensitive Learning Bibliography
    • Turney, P.1
  • 40
    • 0002082928 scopus 로고    scopus 로고
    • Issues and problems in applying neural computing to target marketing
    • Zahavi, J. & Levin, N. (1997). Issues and problems in applying neural computing to target marketing. Journal of Direct Marketing, 11(4), 63-75.
    • (1997) Journal of Direct Marketing , vol.11 , Issue.4 , pp. 63-75
    • Zahavi, J.1    Levin, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.