-
1
-
-
0028496468
-
Learning boolean concepts in the presence of many irrelevant features
-
Almuallim H., Dietterich T.G. Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence. 69:(1-2):1994;279-305.
-
(1994)
Artificial Intelligence
, vol.69
, Issue.1-2
, pp. 279-305
-
-
Almuallim, H.1
Dietterich, T.G.2
-
2
-
-
0034324043
-
A formalism for relevance and its application in feature subset selection
-
Bell D.A., Wang H. A formalism for relevance and its application in feature subset selection. Machine Learning. 41:2000;175-195.
-
(2000)
Machine Learning
, vol.41
, pp. 175-195
-
-
Bell, D.A.1
Wang, H.2
-
3
-
-
0001500753
-
Pattern recognition and reduction of dimensionality
-
P.R. Krishnaiah, & L.N. Kanal. Amsterdam: North-Holland
-
Ben-Bassat M. Pattern recognition and reduction of dimensionality. Krishnaiah P.R., Kanal L.N. Handbook of Statistics. 1982;773-791 North-Holland, Amsterdam.
-
(1982)
Handbook of Statistics
, pp. 773-791
-
-
Ben-Bassat, M.1
-
5
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence. 97:1997;245-271.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
6
-
-
0039513977
-
Occam's razor
-
J.W. Shavlik, & T.G. Dietterich. San Mateo, CA: Morgan Kaufmann
-
Blumer A., Ehrenfeucht A., Haussler D., Warmuth M.K. Occam's razor. Shavlik J.W., Dietterich T.G. Readings in Machine Learning. 1990;201-204 Morgan Kaufmann, San Mateo, CA.
-
(1990)
Readings in Machine Learning
, pp. 201-204
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
15
-
-
0003552733
-
An evaluation of feature selection methods and their application to computer security
-
University of California, Department of Computer Science, Davis, CA
-
J. Doak, An evaluation of feature selection methods and their application to computer security, Technical Report, University of California, Department of Computer Science, Davis, CA, 1992.
-
(1992)
Technical Report
-
-
Doak, J.1
-
16
-
-
85065703189
-
Correlation-based feature selection for discrete and numeric class machine learning
-
Stanford, CA San Mateo, CA: Morgan Kaufmann
-
Hall M.A. Correlation-based feature selection for discrete and numeric class machine learning. Proceedings of Seventeenth International Conference on Machine Learning (ICML), Stanford, CA. 2000;359-366 Morgan Kaufmann, San Mateo, CA.
-
(2000)
Proceedings of Seventeenth International Conference on Machine Learning (ICML)
, pp. 359-366
-
-
Hall, M.A.1
-
19
-
-
0016349356
-
Approximation algorithms for combinatorial problems
-
Johnson D.S. Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9:1974;256-278.
-
(1974)
J. Comput. System Sci.
, vol.9
, pp. 256-278
-
-
Johnson, D.S.1
-
20
-
-
0027002164
-
The feature selection problem: Traditional methods and a new algorithm
-
San Jose, CA
-
Kira K., Rendell L.A. The feature selection problem: Traditional methods and a new algorithm. Proceedings of AAAI-92, San Jose, CA. 1992;129-134.
-
(1992)
Proceedings of AAAI-92
, pp. 129-134
-
-
Kira, K.1
Rendell, L.A.2
-
21
-
-
0003763626
-
-
PhD Thesis, Department of Computer Science, Stanford University, CA
-
R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs, PhD Thesis, Department of Computer Science, Stanford University, CA, 1995.
-
(1995)
Wrappers for Performance Enhancement and Oblivious Decision Graphs
-
-
Kohavi, R.1
-
22
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence. 97:(1-2):1997;273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
25
-
-
0141688369
-
Discretization: An enabling technique
-
Liu H., Hussain F., Tan C.L., Dash M. Discretization: An enabling technique. J. Data Mining Knowledge Discovery. 6:(4):2002;393-423.
-
(2002)
J. Data Mining Knowledge Discovery
, vol.6
, Issue.4
, pp. 393-423
-
-
Liu, H.1
Hussain, F.2
Tan, C.L.3
Dash, M.4
-
32
-
-
85104260032
-
Efficient algorithms for minimizing cross validation error
-
New Brunswick, NJ San Mateo, CA: Morgan Kaufmann
-
Moore A.W., Lee M.S. Efficient algorithms for minimizing cross validation error. Proceedings of Eleventh International Conference on Machine Learning, New Brunswick, NJ. 1994;190-198 Morgan Kaufmann, San Mateo, CA.
-
(1994)
Proceedings of Eleventh International Conference on Machine Learning
, pp. 190-198
-
-
Moore, A.W.1
Lee, M.S.2
-
33
-
-
84948597805
-
A comparison of seven techniques for choosing subsets of pattern recognition
-
Mucciardi A.N., Gose E.E. A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Trans. Comput. C-20:1971;1023-1031.
-
(1971)
IEEE Trans. Comput.
, vol.C-20
, pp. 1023-1031
-
-
Mucciardi, A.N.1
Gose, E.E.2
-
34
-
-
0017535866
-
A branch and bound algorithm for feature selection
-
Narendra P.M., Fukunaga K. A branch and bound algorithm for feature selection. IEEE Trans. Comput. C-26:(9):1977;917-922.
-
(1977)
IEEE Trans. Comput.
, vol.C-26
, Issue.9
, pp. 917-922
-
-
Narendra, P.M.1
Fukunaga, K.2
-
35
-
-
84976897121
-
Constructive induction using a non-greedy strategy for feature selection
-
Aberdeen, Scotland San Mateo, CA: Morgan Kaufmann
-
Oliveira A.L., Vincentelli A.S. Constructive induction using a non-greedy strategy for feature selection. Proceedings of Ninth International Conference on Machine Learning, Aberdeen, Scotland. 1992;355-360 Morgan Kaufmann, San Mateo, CA.
-
(1992)
Proceedings of Ninth International Conference on Machine Learning
, pp. 355-360
-
-
Oliveira, A.L.1
Vincentelli, A.S.2
-
38
-
-
85152626023
-
Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
-
Amherst, MA
-
Schlimmer J.C. Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. Proceedings of Tenth International Conference on Machine Learning, Amherst, MA. 1993;284-290.
-
(1993)
Proceedings of Tenth International Conference on Machine Learning
, pp. 284-290
-
-
Schlimmer, J.C.1
-
40
-
-
0025565091
-
A modelling approach to feature selection
-
Atlantic City, NJ
-
Sheinvald J., Dom B., Niblack W. A modelling approach to feature selection. Proceedings of Tenth International Conference on Pattern Recognition, Atlantic City, NJ, Vol. 1. 1990;535-539.
-
(1990)
Proceedings of Tenth International Conference on Pattern Recognition
, vol.1
, pp. 535-539
-
-
Sheinvald, J.1
Dom, B.2
Niblack, W.3
-
42
-
-
0012657799
-
Prototype and feature selection by sampling and random mutation hill-climbing algorithms
-
New Brunswick, NJ San Mateo, CA: Morgan Kaufmann
-
Skalak D.B. Prototype and feature selection by sampling and random mutation hill-climbing algorithms. Proceedings of Eleventh International Conference on Machine Learning, New Brunswick, NJ. 1994;293-301 Morgan Kaufmann, San Mateo, CA.
-
(1994)
Proceedings of Eleventh International Conference on Machine Learning
, pp. 293-301
-
-
Skalak, D.B.1
-
43
-
-
0038205633
-
A simple feature selection method for text classification
-
Seattle, WA
-
Soucy P., Mineau G.W. A simple feature selection method for text classification. Proceedings of IJCAI-01, Seattle, WA. 2001;897-903.
-
(2001)
Proceedings of IJCAI-01
, pp. 897-903
-
-
Soucy, P.1
Mineau, G.W.2
-
46
-
-
0003421109
-
Stuttgart Neural Network Simulator (SNNS)
-
Technical Report
-
A. Zell, et al., Stuttgart Neural Network Simulator (SNNS), User Manual, Version 4.1, Technical Report, 1995.
-
(1995)
User Manual, Version 4.1
-
-
Zell, A.1
|