메뉴 건너뛰기




Volumn 151, Issue 1-2, 2003, Pages 155-176

Consistency-based search in feature selection

Author keywords

Branch and bound; Classification; Evaluation measures; Feature selection; Random search; Search strategies

Indexed keywords

ALGORITHMS; HEURISTIC METHODS; OPTIMIZATION; SIMULATED ANNEALING;

EID: 0242302657     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0004-3702(03)00079-1     Document Type: Article
Times cited : (809)

References (46)
  • 1
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • Almuallim H., Dietterich T.G. Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence. 69:(1-2):1994;279-305.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 2
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • Bell D.A., Wang H. A formalism for relevance and its application in feature subset selection. Machine Learning. 41:2000;175-195.
    • (2000) Machine Learning , vol.41 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 3
    • 0001500753 scopus 로고
    • Pattern recognition and reduction of dimensionality
    • P.R. Krishnaiah, & L.N. Kanal. Amsterdam: North-Holland
    • Ben-Bassat M. Pattern recognition and reduction of dimensionality. Krishnaiah P.R., Kanal L.N. Handbook of Statistics. 1982;773-791 North-Holland, Amsterdam.
    • (1982) Handbook of Statistics , pp. 773-791
    • Ben-Bassat, M.1
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence. 97:1997;245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 15
    • 0003552733 scopus 로고
    • An evaluation of feature selection methods and their application to computer security
    • University of California, Department of Computer Science, Davis, CA
    • J. Doak, An evaluation of feature selection methods and their application to computer security, Technical Report, University of California, Department of Computer Science, Davis, CA, 1992.
    • (1992) Technical Report
    • Doak, J.1
  • 16
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Stanford, CA San Mateo, CA: Morgan Kaufmann
    • Hall M.A. Correlation-based feature selection for discrete and numeric class machine learning. Proceedings of Seventeenth International Conference on Machine Learning (ICML), Stanford, CA. 2000;359-366 Morgan Kaufmann, San Mateo, CA.
    • (2000) Proceedings of Seventeenth International Conference on Machine Learning (ICML) , pp. 359-366
    • Hall, M.A.1
  • 19
    • 0016349356 scopus 로고
    • Approximation algorithms for combinatorial problems
    • Johnson D.S. Approximation algorithms for combinatorial problems. J. Comput. System Sci. 9:1974;256-278.
    • (1974) J. Comput. System Sci. , vol.9 , pp. 256-278
    • Johnson, D.S.1
  • 20
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • San Jose, CA
    • Kira K., Rendell L.A. The feature selection problem: Traditional methods and a new algorithm. Proceedings of AAAI-92, San Jose, CA. 1992;129-134.
    • (1992) Proceedings of AAAI-92 , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence. 97:(1-2):1997;273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 32
    • 85104260032 scopus 로고
    • Efficient algorithms for minimizing cross validation error
    • New Brunswick, NJ San Mateo, CA: Morgan Kaufmann
    • Moore A.W., Lee M.S. Efficient algorithms for minimizing cross validation error. Proceedings of Eleventh International Conference on Machine Learning, New Brunswick, NJ. 1994;190-198 Morgan Kaufmann, San Mateo, CA.
    • (1994) Proceedings of Eleventh International Conference on Machine Learning , pp. 190-198
    • Moore, A.W.1    Lee, M.S.2
  • 33
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition
    • Mucciardi A.N., Gose E.E. A comparison of seven techniques for choosing subsets of pattern recognition. IEEE Trans. Comput. C-20:1971;1023-1031.
    • (1971) IEEE Trans. Comput. , vol.C-20 , pp. 1023-1031
    • Mucciardi, A.N.1    Gose, E.E.2
  • 34
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature selection
    • Narendra P.M., Fukunaga K. A branch and bound algorithm for feature selection. IEEE Trans. Comput. C-26:(9):1977;917-922.
    • (1977) IEEE Trans. Comput. , vol.C-26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 35
    • 84976897121 scopus 로고
    • Constructive induction using a non-greedy strategy for feature selection
    • Aberdeen, Scotland San Mateo, CA: Morgan Kaufmann
    • Oliveira A.L., Vincentelli A.S. Constructive induction using a non-greedy strategy for feature selection. Proceedings of Ninth International Conference on Machine Learning, Aberdeen, Scotland. 1992;355-360 Morgan Kaufmann, San Mateo, CA.
    • (1992) Proceedings of Ninth International Conference on Machine Learning , pp. 355-360
    • Oliveira, A.L.1    Vincentelli, A.S.2
  • 38
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
    • Amherst, MA
    • Schlimmer J.C. Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. Proceedings of Tenth International Conference on Machine Learning, Amherst, MA. 1993;284-290.
    • (1993) Proceedings of Tenth International Conference on Machine Learning , pp. 284-290
    • Schlimmer, J.C.1
  • 42
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill-climbing algorithms
    • New Brunswick, NJ San Mateo, CA: Morgan Kaufmann
    • Skalak D.B. Prototype and feature selection by sampling and random mutation hill-climbing algorithms. Proceedings of Eleventh International Conference on Machine Learning, New Brunswick, NJ. 1994;293-301 Morgan Kaufmann, San Mateo, CA.
    • (1994) Proceedings of Eleventh International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 43
    • 0038205633 scopus 로고    scopus 로고
    • A simple feature selection method for text classification
    • Seattle, WA
    • Soucy P., Mineau G.W. A simple feature selection method for text classification. Proceedings of IJCAI-01, Seattle, WA. 2001;897-903.
    • (2001) Proceedings of IJCAI-01 , pp. 897-903
    • Soucy, P.1    Mineau, G.W.2
  • 46
    • 0003421109 scopus 로고
    • Stuttgart Neural Network Simulator (SNNS)
    • Technical Report
    • A. Zell, et al., Stuttgart Neural Network Simulator (SNNS), User Manual, Version 4.1, Technical Report, 1995.
    • (1995) User Manual, Version 4.1
    • Zell, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.