메뉴 건너뛰기




Volumn 10, Issue 6, 2006, Pages 521-538

A comprehensive survey of numeric and symbolic outlier mining techniques

Author keywords

depth based; distance based; distribution based; exception patterns; interestingness; outliers; rule based; Symbolic; taxonomy; unexpectedness; web based

Indexed keywords

POPULATION STATISTICS; SURVEYS; TAXONOMIES;

EID: 47949100550     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2006-10604     Document Type: Article
Times cited : (129)

References (80)
  • 8
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD Records 22(2) (1993), 207-216.
    • (1993) ACM SIGMOD Records , vol.22 , Issue.2 , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 12
    • 0000835612 scopus 로고
    • The grand your: A yool for viewing multidimensional data
    • D. Asimov, The grand your: a yool for viewing multidimensional data, SIAM J.Sci. Stat. Compu 6 (1985), 128-143.
    • (1985) SIAM J.Sci. Stat. Compu , vol.6 , pp. 128-143
    • Asimov, D.1
  • 14
    • 17444413786 scopus 로고    scopus 로고
    • An effective and efficient algorithm for high-dimensional outlier detection
    • C.C. Aggarwal and P.S. Yu, An effective and efficient algorithm for high-dimensional outlier detection, The VLDB Journal 14(2) (2005), 211-221.
    • (2005) The VLDB Journal , vol.14 , Issue.2 , pp. 211-221
    • Aggarwal, C.C.1    Yu, P.S.2
  • 26
  • 28
    • 38249010957 scopus 로고
    • A new measure of overall potential influence in linear regression
    • A.S. Hadi, A new measure of overall potential influence in linear regression, Computation Statistics Data Analysis 14 (1992), 1-27.
    • (1992) Computation Statistics Data Analysis , vol.14 , pp. 1-27
    • Hadi, A.S.1
  • 29
    • 0036644801 scopus 로고    scopus 로고
    • Parallel algorithms for mining outliers in large databases
    • E. Hung and D.W. Cheung, Parallel algorithms for mining outliers in large databases, Distributed and Parallel Databases 12(1) (2002), 5-26.
    • (2002) Distributed and Parallel Databases , vol.12 , Issue.1 , pp. 5-26
    • Hung, E.1    Cheung, D.W.2
  • 35
    • 0034863318 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern classification
    • T. Inoue and S. Abe, Fuzzy Support Vector Machines for Pattern Classification, Proceedings of IJCNN, 2001, 1449-1455.
    • (2001) Proceedings of IJCNN , pp. 1449-1455
    • Inoue, T.1    Abe, S.2
  • 39
    • 84883663511 scopus 로고    scopus 로고
    • PhD Dissertation, University of Turku, Department of Economics FIN-20014 Turku, Finland, June
    • T. Jussi, Outliers in Non-linear Time Series Econometrics, PhD Dissertation, University of Turku, Department of Economics, FIN-20014 Turku, Finland, June 2001.
    • (2001) Outliers in Non-linear Time Series Econometrics
    • Jussi, T.1
  • 45
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • E.M. Knorr, R.T. Ng and V. Tucacov, Distance-based outliers: Algorithms and applications, The VLDB Journal 8(3-4) (2000), 237-253.
    • (2000) The VLDB Journal , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucacov, V.3
  • 52
    • 36449009557 scopus 로고
    • Extrema1 dynamics: A unifying physical explanation of fractals, L/F noise, and activated processes
    • S.L, Miller,W.M. Miller and P.J. Mcwhorter, Extrema1 dynamics: A unifying physical explanation of fractals, L/F noise, and activated processes, Journal of Applied. Physics 13(6) (1993), 2617-2628.
    • (1993) Journal of Applied. Physics , vol.13 , pp. 2617-2628
    • Miller, S.L.1    Miller, W.M.2    McWhorter, P.J.3
  • 53
    • 0030127467 scopus 로고    scopus 로고
    • Scaling up inductive learning with massive parallelism
    • F. Provost and J. Aronis, Scaling up inductive learning with massive parallelism, Machine Learning 23(1) (1996), 33-46.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 33-46
    • Provost, F.1    Aronis, J.2
  • 54
    • 25844450147 scopus 로고    scopus 로고
    • Outlier detection algorithms in data mining systems
    • M.I. Petrovskiy, Outlier detection algorithms in data mining systems, Programming and Computer Software 29(4) (2003), 228-237.
    • (2003) Programming and Computer Software , vol.29 , Issue.4 , pp. 228-237
    • Petrovskiy, M.I.1
  • 57
    • 0033345672 scopus 로고    scopus 로고
    • Unexpectedness as a measure of interestingness in knowledge discovery
    • B. Padmanabhan and A. Tuzhilin, Unexpectedness as a measure of interestingness in knowledge discovery, Decision Support Systems 27(3) (1999), 303-318.
    • (1999) Decision Support Systems , vol.27 , Issue.3 , pp. 303-318
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 75
    • 84883711585 scopus 로고    scopus 로고
    • December
    • http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data, December 2004.
    • (2004)
  • 77
    • 0242540409 scopus 로고    scopus 로고
    • A unifying framework for detecting outliers and change points from non-stationary time series data
    • Canada
    • K. Yamanish, J. Takeuchi, A Unifying Framework for Detecting Outliers and Change Points from Non-Stationary Time Series Data, Proceedings of the 8th ACM SIGKDD International Conference, Canada, 2002, 676-681.
    • (2002) Proceedings of the 8th ACM SIGKDD International Conference , pp. 676-681
    • Yamanish, K.1    Takeuchi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.