메뉴 건너뛰기




Volumn 20, Issue 2, 2010, Pages 259-289

A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes

Author keywords

Anomaly detection; Data mining; Distributed data sets; High dimensional data sets; Mixed attribute data sets; Outlier detection

Indexed keywords

ANOMALY DETECTION; ATTRIBUTE DATA; DISTRIBUTED DATA; HIGH DIMENSIONAL DATA; OUTLIER DETECTION;

EID: 77649275031     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-009-0148-z     Document Type: Article
Times cited : (107)

References (44)
  • 1
    • 84893204428 scopus 로고    scopus 로고
    • A meta analysis study of outlier detection methods in classification
    • Department of Mathematics, University of Puerto Rico at Mayaguez. Available at
    • Acuna E, Rodriguez C (2004) A meta analysis study of outlier detection methods in classification. Technical paper, Department of Mathematics, University of Puerto Rico at Mayaguez. Available at http://academic.uprm. edu~eacuna/paperout.pdf
    • (2004) Technical Paper
    • Acuna, E.1    Rodriguez, C.2
  • 2
    • 0038969998 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • 10.1145/376284.375668
    • C Aggarwal P Yu 2001 Outlier detection for high dimensional data ACM SIGMOD Record 30 2 37 46 10.1145/376284.375668
    • (2001) ACM SIGMOD Record , vol.30 , Issue.2 , pp. 37-46
    • Aggarwal, C.1    Yu, P.2
  • 5
  • 11
    • 0042421807 scopus 로고    scopus 로고
    • Statistical fraud detection: A review
    • 1013.62115 10.1214/ss/1042727940 1963313
    • R Bolton D Hand 2002 Statistical fraud detection: a review Stat Sci 17 3 235 255 1013.62115 10.1214/ss/1042727940 1963313
    • (2002) Stat Sci , vol.17 , Issue.3 , pp. 235-255
    • Bolton, R.1    Hand, D.2
  • 13
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • 10.1145/335191.335388
    • M Breunig H Kriegel R Ng J Sander 2000 LOF: identifying density-based local outliers ACM SIGMOD Record 29 2 93 104 10.1145/335191.335388
    • (2000) ACM SIGMOD Record , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.1    Kriegel, H.2    Ng, R.3    Sander, J.4
  • 18
    • 26944461753 scopus 로고    scopus 로고
    • Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data
    • Ertoz L, Steinbach M, Kumar V (2003) Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: SIAM international conference on data mining, pp 47-58
    • (2003) SIAM International Conference on Data Mining , pp. 47-58
    • Ertoz, L.1    Steinbach, M.2    Kumar, V.3
  • 19
    • 23944472645 scopus 로고    scopus 로고
    • Tight upper bounds on the number of candidate patterns
    • DOI 10.1145/1071610.1071611
    • F Geerts B Goethals J Van den Bussche 2005 Tight upper bounds on the number of candidate patterns ACM Transac Database System (TODS) 30 2 333 363 10.1145/1071610.1071611 (Pubitemid 41204993)
    • (2005) ACM Transactions on Database Systems , vol.30 , Issue.2 , pp. 333-363
    • Geerts, F.1    Goethals, B.2    Van Bussche, J.D.3
  • 25
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • 1101.68023 10.1023/B:AIRE.0000045502.10941.a9
    • V Hodge J Austin 2004 A survey of outlier detection methodologies Artif Intell Rev 22 2 85 126 1101.68023 10.1023/B:AIRE.0000045502.10941.a9
    • (2004) Artif Intell Rev , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 27
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • 10.1007/s007780050006
    • E Knorr R Ng V Tucakov 2000 Distance-based outliers: algorithms and applications Int J Very Large Data Bases VLDB 8 3 237 253 10.1007/s007780050006
    • (2000) Int J Very Large Data Bases VLDB , vol.8 , Issue.3 , pp. 237-253
    • Knorr, E.1    Ng, R.2    Tucakov, V.3
  • 35
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • 10.1007/s10618-005-0014-6 2227402
    • M Otey A Ghoting S Parthasarathy 2006 Fast distributed outlier detection in mixed-attribute data sets Data Mining Knowl Discov 12 2 203 228 10.1007/s10618-005-0014-6 2227402
    • (2006) Data Mining Knowl Discov , vol.12 , Issue.2 , pp. 203-228
    • Otey, M.1    Ghoting, A.2    Parthasarathy, S.3
  • 37
    • 0040481253 scopus 로고    scopus 로고
    • A comparison of multivariate outlier detection methods for clinical laboratory safety data
    • 1856382
    • K Penny I Jolliffe 2001 A comparison of multivariate outlier detection methods for clinical laboratory safety data The Statistician 50 3 295 308 1856382
    • (2001) The Statistician , vol.50 , Issue.3 , pp. 295-308
    • Penny, K.1    Jolliffe, I.2
  • 39
    • 0001614845 scopus 로고
    • A probabilistic resource allocating network for novelty detection
    • 10.1162/neco.1994.6.2.270
    • S Roberts L Tarassenko 1994 A probabilistic resource allocating network for novelty detection Neural Comput 6 2 270 284 10.1162/neco.1994.6.2.270
    • (1994) Neural Comput , vol.6 , Issue.2 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 40
    • 0002564033 scopus 로고
    • Multivariate estimation with high breakdown point
    • 851060
    • P Rousseeuw 1985 Multivariate estimation with high breakdown point Math Stat Appl 8 283 297 851060
    • (1985) Math Stat Appl , vol.8 , pp. 283-297
    • Rousseeuw, P.1
  • 43
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • 1078.68728 10.1023/B:MACH.0000008084.60811.49
    • D Tax R Duin 2004 Support vector data description Mach Learn 54 1 45 66 1078.68728 10.1023/B:MACH.0000008084.60811.49
    • (2004) Mach Learn , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 44
    • 33645552151 scopus 로고    scopus 로고
    • Finding centric local outliers in categorical/numerical spaces
    • 10.1007/s10115-005-0197-6
    • J Yu W Qian H Lu A Zhou 2006 Finding centric local outliers in categorical/numerical spaces Knowl Inform Syst 9 3 309 338 10.1007/s10115-005- 0197-6
    • (2006) Knowl Inform Syst , vol.9 , Issue.3 , pp. 309-338
    • Yu, J.1    Qian, W.2    Lu, H.3    Zhou, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.