-
2
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
Knorr, E.M. and Ng, R.T., Algorithms for Mining Distance-Based Outliers in Large Datasets, Proc. 24th VLDB, 1998.
-
(1998)
Proc. 24th VLDB
-
-
Knorr, E.M.1
Ng, R.T.2
-
3
-
-
0034592923
-
On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
Boston
-
Yamanishi, K, Takeichi, J., and Williams, G., On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms, Proc. of the Sixth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Boston, 2000, pp. 320-324.
-
(2000)
Proc. of the Sixth ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
, pp. 320-324
-
-
Yamanishi, K.1
Takeichi, J.2
Williams, G.3
-
5
-
-
25844515537
-
-
Purdue University
-
Intrusion Detection Pages, Purdue University, 2003, http://www.cerias. purdue.edu/coast/intrusion-detection/index.html.
-
(2003)
Intrusion Detection Pages
-
-
-
6
-
-
38249010957
-
A new measure of overall potential influence in linear regression
-
Hadi, A.S., A New Measure of Overall Potential Influence in Linear Regression, Computational Statistics Data Analysis, 1992, vol. 14, pp. 1-27.
-
(1992)
Computational Statistics Data Analysis
, vol.14
, pp. 1-27
-
-
Hadi, A.S.1
-
7
-
-
0242582775
-
Outlier detection using replicator neural networks
-
Hawkins, S., He, H., Williams, G., and Baxter, R., Outlier Detection Using Replicator Neural Networks, Proc. of the Fifth Int. Conf. on Data Warehousing and Knowledge Discovery, 2002.
-
(2002)
Proc. of the Fifth Int. Conf. on Data Warehousing and Knowledge Discovery
-
-
Hawkins, S.1
He, H.2
Williams, G.3
Baxter, R.4
-
8
-
-
0002948319
-
Algorithms for mining distance-based outliers in large datasets
-
Knorr, E.M. and Ng, R.T., Algorithms for Mining Distance-Based Outliers in Large Datasets, Proc. 24th VLDB, 1998.
-
(1998)
Proc. 24th VLDB
-
-
Knorr, E.M.1
Ng, R.T.2
-
9
-
-
0034133513
-
Distance-based outliers: Algorithms and applications
-
Knorr, E.M., Ng, R.T., and Tucakov, V., Distance-Based Outliers: Algorithms and Applications, VLDB J., 2000, vol. 8, no. 3-4, pp. 237-253.
-
(2000)
VLDB J.
, vol.8
, Issue.3-4
, pp. 237-253
-
-
Knorr, E.M.1
Ng, R.T.2
Tucakov, V.3
-
10
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
Ramaswamy, S., Rastogi, R., and Shim, K., Efficient Algorithms for Mining Outliers from Large Data Sets, Proc. of ACM SIGMOD Int. Conf. on Management of Data, 2000, pp. 427-438.
-
(2000)
Proc. of ACM SIGMOD Int. Conf. on Management of Data
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
11
-
-
0002441277
-
OPTICS-OF: Identifying local outliers
-
Prague
-
Breunig, M.M., Kriegel, H.-P., Ng, R., and Sander, J., OPTICS-OF: Identifying Local Outliers, Proc. Conf. on Principles of Data Mining and Knowledge Discovery, Prague, 1999.
-
(1999)
Proc. Conf. on Principles of Data Mining and Knowledge Discovery
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.3
Sander, J.4
-
12
-
-
70449702302
-
-
Tang, J., Chen, Z., Wai-chee Fu A., and Cheung, D., A Robust Outlier Detection Scheme for Large Data Sets, 2001.
-
(2001)
A Robust Outlier Detection Scheme for Large Data Sets
-
-
Tang, J.1
Chen, Z.2
Wai-Chee Fu, A.3
Cheung, D.4
-
13
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
Dallas
-
Breunig, S., Kriegel, H.-P., Ng, R., and Sander, J., LOF: Identifying Density-Based Local Outliers, ACM SIGMOD Int. Conf. on Management of Data, Dallas, 2000.
-
(2000)
ACM SIGMOD Int. Conf. on Management of Data
-
-
Breunig, S.1
Kriegel, H.-P.2
Ng, R.3
Sander, J.4
-
14
-
-
0035788909
-
Mining top-n local outliers in large databases
-
Wen Jin, Tung, A.K.H., and Han, J., Mining Top-n Local Outliers in Large Databases, KDD, 2001, pp. 293-298.
-
(2001)
KDD
, pp. 293-298
-
-
Jin, W.1
Tung, A.K.H.2
Han, J.3
-
16
-
-
0040742916
-
-
Moscow: Nauka
-
Aizerman, M.A., Braverman, E.M., and Rozonoer, L.I., Metod potentsial'nykh funktsii v teorii obucheniya mashin (Kernel Function Method in Machine Learning), Moscow: Nauka, 1970.
-
(1970)
Metod Potentsial'nykh Funktsii v Teorii Obucheniya Mashin (Kernel Function Method in Machine Learning)
-
-
Aizerman, M.A.1
Braverman, E.M.2
Rozonoer, L.I.3
-
18
-
-
25844483146
-
Similarity measure for comparing precedents in data mining systems supporting OLEDB standard
-
Moscow: Izdatel'skii otdel fakul'teta VMiK MGU
-
Petrovskiy, M.I., Similarity Measure for Comparing Precedents in Data Mining Systems Supporting OLEDB Standard in Programmnye sistemy i instrumenty, Moscow: Izdatel'skii otdel fakul'teta VMiK MGU, 2002, no. 3, pp. 33-43.
-
(2002)
Programmnye Sistemy i Instrumenty
, Issue.3
, pp. 33-43
-
-
Petrovskiy, M.I.1
-
19
-
-
25844501331
-
A fully precise null extended nested relational algebra
-
Levene, M. and Loizou, G., A Fully Precise Null Extended Nested Relational Algebra, Fundamenta Informaticae, 1993, vol. 19, pp. 303-343.
-
(1993)
Fundamenta Informaticae
, vol.19
, pp. 303-343
-
-
Levene, M.1
Loizou, G.2
-
21
-
-
0001089823
-
Support vector clustering
-
Ben-Hur, A., Horn, D., Siegelmann, H.T., and Vapnik, V., Support Vector Clustering, J. Machine Learning Research, 2001, no. 2, pp. 125-137.
-
(2001)
J. Machine Learning Research
, Issue.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.T.3
Vapnik, V.4
-
22
-
-
0034863318
-
-
Takuya Inoue and Shigeo Abe, Fuzzy Support Vector Machine for Pattern Classification, Proc. of IJCNN, 2001, pp. 1449-1455.
-
(2001)
Proc. of IJCNN
, pp. 1449-1455
-
-
Inoue, T.1
Abe, S.2
-
23
-
-
0036565280
-
Mercer kernel based clustering in feature space
-
Girolami, M., Mercer Kernel Based Clustering in Feature Space, IEEE Trans. Neural Networks, 2001, vol. 13, no. 4, pp. 780-784.
-
(2001)
IEEE Trans. Neural Networks
, vol.13
, Issue.4
, pp. 780-784
-
-
Girolami, M.1
-
25
-
-
25844436596
-
Computer attacks: What they are and how to defend against them
-
Comput. Security Division
-
Mell, P., Computer Attacks: What They Are and How To Defend against Them, NIST, Comput. Security Division, 1999.
-
(1999)
NIST
-
-
Mell, P.1
-
26
-
-
0038663185
-
Intrusion detection with unlabeled data using clustering
-
Portnoy, L., Eskin, E., and Stolfo, S.J., Intrusion Detection with Unlabeled Data Using Clustering, Proc. of ACM CSS.
-
Proc. of ACM CSS.
-
-
Portnoy, L.1
Eskin, E.2
Stolfo, S.J.3
|