-
1
-
-
23944475626
-
Mechanisms of, and barriers to, horizontal gene transfer between bacteria
-
COI: 1:CAS:528:DC%2BD2MXps1Kjtbk%3D
-
Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005)
-
(2005)
Nat. Rev. Microbiol.
, vol.3
, pp. 711-721
-
-
Thomas, C.M.1
Nielsen, K.M.2
-
2
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
COI: 1:CAS:528:DC%2BD2sXjtlWntb8%3D
-
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007)
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
-
3
-
-
57849137502
-
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
-
COI: 1:CAS:528:DC%2BD1cXhsFSmtrnE
-
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008)
-
(2008)
Science
, vol.322
, pp. 1843-1845
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
4
-
-
84954537942
-
CRISPR-Cas adaptation: insights into the mechanism of action
-
COI: 1:CAS:528:DC%2BC28XmslKluw%3D%3D
-
Amitai, G. & Sorek, R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67–76 (2016)
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 67-76
-
-
Amitai, G.1
Sorek, R.2
-
5
-
-
85017393597
-
CRISPR-Cas: adapting to change
-
Jackson, S. A. et al. CRISPR-Cas: adapting to change. Science 356, eaal5056 (2017)
-
(2017)
Science
, vol.356
-
-
Jackson, S.A.1
-
6
-
-
84959294548
-
Adaptation in CRISPR-Cas systems
-
COI: 1:CAS:528:DC%2BC28Xjs1yhs7k%3D
-
Sternberg, S. H., Richter, H., Charpentier, E. & Qimron, U. Adaptation in CRISPR-Cas systems. Mol. Cell 61, 797–808 (2016)
-
(2016)
Mol. Cell
, vol.61
, pp. 797-808
-
-
Sternberg, S.H.1
Richter, H.2
Charpentier, E.3
Qimron, U.4
-
7
-
-
85020445396
-
Diversity, classification and evolution of CRISPR-Cas systems
-
COI: 1:CAS:528:DC%2BC2sXptlSgsrc%3D
-
Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017)
-
(2017)
Curr. Opin. Microbiol.
, vol.37
, pp. 67-78
-
-
Koonin, E.V.1
Makarova, K.S.2
Zhang, F.3
-
8
-
-
85018396322
-
Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery
-
COI: 1:CAS:528:DC%2BC2sXmsFaqs7k%3D
-
Krupovic, M., Beguin, P. & Koonin, E. V. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol. 38, 36–43 (2017)
-
(2017)
Curr. Opin. Microbiol.
, vol.38
, pp. 36-43
-
-
Krupovic, M.1
Beguin, P.2
Koonin, E.V.3
-
9
-
-
84902010986
-
Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
-
COI: 1:CAS:528:DC%2BC2cXntVSms7g%3D
-
Nunez, J. K. et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21, 528–534 (2014)
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 528-534
-
-
Nunez, J.K.1
-
10
-
-
84947495037
-
Foreign DNA capture during CRISPR-Cas adaptive immunity
-
COI: 1:CAS:528:DC%2BC2MXhslOrtLfN
-
Nunez, J. K., Harrington, L. B., Kranzusch, P. J., Engelman, A. N. & Doudna, J. A. Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527, 535–538 (2015)
-
(2015)
Nature
, vol.527
, pp. 535-538
-
-
Nunez, J.K.1
Harrington, L.B.2
Kranzusch, P.J.3
Engelman, A.N.4
Doudna, J.A.5
-
11
-
-
84946130269
-
Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems
-
COI: 1:CAS:528:DC%2BC2MXhs1Ortr%2FO
-
Wang, J. et al. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163, 840–853 (2015)
-
(2015)
Cell
, vol.163
, pp. 840-853
-
-
Wang, J.1
-
12
-
-
85025842701
-
Structures of the CRISPR genome integration complex
-
COI: 1:CAS:528:DC%2BC2sXhsVOitbfO
-
Wright, A. V. et al. Structures of the CRISPR genome integration complex. Science 357, 1113–1118 (2017)
-
(2017)
Science
, vol.357
, pp. 1113-1118
-
-
Wright, A.V.1
-
13
-
-
85030696100
-
How type II CRISPR-Cas establish immunity through Cas1–Cas2-mediated spacer integration
-
COI: 1:CAS:528:DC%2BC2sXhs1Sqs7rI
-
Xiao, Y., Ng, S., Nam, K. H. & Ke, A. How type II CRISPR-Cas establish immunity through Cas1–Cas2-mediated spacer integration. Nature 550, 137–141 (2017)
-
(2017)
Nature
, vol.550
, pp. 137-141
-
-
Xiao, Y.1
Ng, S.2
Nam, K.H.3
Ke, A.4
-
14
-
-
84990233575
-
Protecting genome integrity during CRISPR immune adaptation
-
COI: 1:CAS:528:DC%2BC28XhsVKisrzP
-
Wright, A. V. & Doudna, J. A. Protecting genome integrity during CRISPR immune adaptation. Nat. Struct. Mol. Biol. 23, 876–883 (2016)
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 876-883
-
-
Wright, A.V.1
Doudna, J.A.2
-
15
-
-
84924664059
-
Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
-
COI: 1:CAS:528:DC%2BC2MXjt1Snu7Y%3D
-
Nunez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193–198 (2015)
-
(2015)
Nature
, vol.519
, pp. 193-198
-
-
Nunez, J.K.1
Lee, A.S.2
Engelman, A.3
Doudna, J.A.4
-
16
-
-
84904019733
-
Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC2cXhtFCqsrnF
-
Arslan, Z., Hermanns, V., Wurm, R., Wagner, R. & Pul, U. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res. 42, 7884–7893 (2014)
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 7884-7893
-
-
Arslan, Z.1
Hermanns, V.2
Wurm, R.3
Wagner, R.4
Pul, U.5
-
17
-
-
84961952607
-
Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity
-
COI: 1:CAS:528:DC%2BC28XhtVCqsbzO
-
Ivancic-Bace, I., Cass, S. D., Wearne, S. J. & Bolt, E. L. Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res. 43, 10821–10830 (2015)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10821-10830
-
-
Ivancic-Bace, I.1
Cass, S.D.2
Wearne, S.J.3
Bolt, E.L.4
-
18
-
-
84861639567
-
Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
-
COI: 1:CAS:528:DC%2BC38XpsFKmsbs%3D
-
Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40, 5569–5576 (2012)
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
Goren, M.G.2
Qimron, U.3
-
19
-
-
84994798354
-
CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration
-
COI: 1:CAS:528:DC%2BC28XhsVyktL7O
-
McGinn, J. & Marraffini, L. A. CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration. Mol. Cell 64, 616–623 (2016)
-
(2016)
Mol. Cell
, vol.64
, pp. 616-623
-
-
McGinn, J.1
Marraffini, L.A.2
-
20
-
-
84861117236
-
Persisting viral sequences shape microbial CRISPR-based immunity
-
COI: 1:CAS:528:DC%2BC38XmsF2rtLw%3D
-
Weinberger, A. D. et al. Persisting viral sequences shape microbial CRISPR-based immunity. PLoS Comput. Biol. 8, e1002475 (2012)
-
(2012)
PLoS Comput. Biol.
, vol.8
-
-
Weinberger, A.D.1
-
21
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
COI: 1:CAS:528:DC%2BC3MXktVGmsLk%3D
-
Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011)
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
22
-
-
84879028690
-
Programmable plasmid interference by the CRISPR-Cas system in
-
COI: 1:CAS:528:DC%2BC2cXjtl2n
-
Elmore, J. R. et al. Programmable plasmid interference by the CRISPR-Cas system in Thermococcus kodakarensis. RNA Biol. 10, 828–840 (2013)
-
(2013)
Thermococcus kodakarensis. RNA Biol.
, vol.10
, pp. 828-840
-
-
Elmore, J.R.1
-
23
-
-
84879023629
-
Two CRISPR-Cas systems in Methanosarcina mazei strain Go1 display common processing features despite belonging to different types I and III
-
COI: 1:CAS:528:DC%2BC2cXjtlyr
-
Nickel, L. et al. Two CRISPR-Cas systems in Methanosarcina mazei strain Go1 display common processing features despite belonging to different types I and III. RNA Biol. 10, 779–791 (2013)
-
(2013)
RNA Biol.
, vol.10
, pp. 779-791
-
-
Nickel, L.1
-
24
-
-
84864815932
-
RNA processing in the minimal organism Nanoarchaeum equitans
-
COI: 1:CAS:528:DC%2BC38Xhtl2msbzL
-
Randau, L. RNA processing in the minimal organism Nanoarchaeum equitans. Genome Biol. 13, R63 (2012)
-
(2012)
Genome Biol.
, vol.13
-
-
Randau, L.1
-
25
-
-
84868111481
-
Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis
-
COI: 1:CAS:528:DC%2BC38XhsFygurbE
-
Richter, H. et al. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res. 40, 9887–9896 (2012)
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 9887-9896
-
-
Richter, H.1
-
26
-
-
85030106687
-
Kinetics of dCas9 target search in Escherichia coli
-
COI: 1:CAS:528:DC%2BC2sXhs1SrtLbI
-
Jones, D. L. et al. Kinetics of dCas9 target search in Escherichia coli. Science 357, 1420–1424 (2017)
-
(2017)
Science
, vol.357
, pp. 1420-1424
-
-
Jones, D.L.1
-
27
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
COI: 1:CAS:528:DC%2BC2cXjs1GgtL0%3D
-
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014)
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
28
-
-
84964693342
-
The contribution of genetic recombination to CRISPR array evolution
-
COI: 1:CAS:528:DC%2BC2MXhs1Khu77I
-
Kupczok, A., Landan, G. & Dagan, T. The contribution of genetic recombination to CRISPR array evolution. Genome Biol. Evol. 7, 1925–1939 (2015)
-
(2015)
Genome Biol. Evol.
, vol.7
, pp. 1925-1939
-
-
Kupczok, A.1
Landan, G.2
Dagan, T.3
-
29
-
-
38149061877
-
Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses
-
COI: 1:CAS:528:DC%2BD1cXisFCgu7c%3D, PID: 17894817
-
Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–2007 (2008)
-
(2008)
Environ. Microbiol.
, vol.10
, pp. 200-2007
-
-
Tyson, G.W.1
Banfield, J.F.2
-
30
-
-
84905594146
-
Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer
-
COI: 1:CAS:528:DC%2BC2cXht1ygt7jF
-
Richter, C. et al. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 42, 8516–8526 (2014)
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 8516-8526
-
-
Richter, C.1
-
31
-
-
84941907747
-
Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
-
Rollie, C., Schneider, S., Brinkmann, A. S., Bolt, E. L. & White, M. F. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 10.7554/eLife.08716 (2015)
-
(2015)
eLife
-
-
Rollie, C.1
Schneider, S.2
Brinkmann, A.S.3
Bolt, E.L.4
White, M.F.5
-
32
-
-
84974693401
-
CRISPR immunological memory requires a host factor for specificity
-
COI: 1:CAS:528:DC%2BC28Xotlentr8%3D
-
Nunez, J. K., Bai, L., Harrington, L. B., Hinder, T. L. & Doudna, J. A. CRISPR immunological memory requires a host factor for specificity. Mol. Cell 62, 824–833 (2016)
-
(2016)
Mol. Cell
, vol.62
, pp. 824-833
-
-
Nunez, J.K.1
Bai, L.2
Harrington, L.B.3
Hinder, T.L.4
Doudna, J.A.5
-
33
-
-
85044551490
-
Prespacer processing and specific integration in a Type I-A CRISPR system
-
COI: 1:CAS:528:DC%2BC1cXitlGjtbvF
-
Rollie, C., Graham, S., Rouillon, C. & White, M. F. Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Res. 46, 1007–1020 (2018)
-
(2018)
Nucleic Acids Res.
, vol.46
, pp. 1007-1020
-
-
Rollie, C.1
Graham, S.2
Rouillon, C.3
White, M.F.4
-
34
-
-
84902095351
-
Classification and evolution of type II CRISPR-Cas systems
-
COI: 1:CAS:528:DC%2BC2cXhtVWmsbrM
-
Chylinski, K., Makarova, K. S., Charpentier, E. & Koonin, E. V. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 42, 6091–6105 (2014)
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 6091-6105
-
-
Chylinski, K.1
Makarova, K.S.2
Charpentier, E.3
Koonin, E.V.4
-
35
-
-
84922978235
-
Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus
-
COI: 1:CAS:528:DC%2BC2MXhsFegsLfL
-
Wei, Y., Chesne, M. T., Terns, R. M. & Terns, M. P. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res. 43, 1749–1758 (2015)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 1749-1758
-
-
Wei, Y.1
Chesne, M.T.2
Terns, R.M.3
Terns, M.P.4
-
36
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
COI: 1:CAS:528:DC%2BC2MXotFarur8%3D
-
Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510 (2015)
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
-
37
-
-
84874619358
-
Strong bias in the bacterial CRISPR elements that confer immunity to phage
-
Paez-Espino, D. et al. Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat. Commun. 4, 1430 (2013)
-
(2013)
Nat. Commun.
, vol.4
-
-
Paez-Espino, D.1
-
38
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
COI: 1:CAS:528:DC%2BC38Xht1SktbjJ
-
Bikard, D., Hatoum-Aslan, A., Mucida, D. & Marraffini, L. A. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12, 177–186 (2012)
-
(2012)
Cell Host Microbe
, vol.12
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
39
-
-
78649342032
-
The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction
-
COI: 1:CAS:528:DC%2BC3MXhs1Siu7w%3D
-
Edgar, R. & Qimron, U. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction. J. Bacteriol. 192, 6291–6294 (2010)
-
(2010)
J. Bacteriol.
, vol.192
, pp. 6291-6294
-
-
Edgar, R.1
Qimron, U.2
-
40
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
COI: 1:CAS:528:DC%2BC3sXhsFCkurY%3D
-
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013)
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
41
-
-
85017152413
-
CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity
-
COI: 1:CAS:528:DC%2BC2sXlt12rtrw%3D
-
Modell, J. W., Jiang, W. & Marraffini, L. A. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544, 101–104 (2017)
-
(2017)
Nature
, vol.544
, pp. 101-104
-
-
Modell, J.W.1
Jiang, W.2
Marraffini, L.A.3
-
42
-
-
57349157777
-
RecBCD enzyme and the repair of double-stranded DNA breaks
-
COI: 1:CAS:528:DC%2BD1MXps1Gktw%3D%3D
-
Dillingham, M. S. & Kowalczykowski, S. C. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72, 642–671 (2008)
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 642-671
-
-
Dillingham, M.S.1
Kowalczykowski, S.C.2
-
43
-
-
79959338446
-
Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease
-
COI: 1:CAS:528:DC%2BC3MXotVCht7o%3D
-
Yeeles, J. T., van Aelst, K., Dillingham, M. S. & Moreno-Herrero, F. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease. Mol. Cell 42, 806–816 (2011)
-
(2011)
Mol. Cell
, vol.42
, pp. 806-816
-
-
Yeeles, J.T.1
van Aelst, K.2
Dillingham, M.S.3
Moreno-Herrero, F.4
-
44
-
-
85021432928
-
Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex
-
COI: 1:CAS:528:DC%2BC2sXpvFCmsb8%3D, PID: 28611213
-
Fagerlund, R. D. et al. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex. Proc. Natl Acad. Sci. USA 114, E5122–E5128 (2017)
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. E5122-E5128
-
-
Fagerlund, R.D.1
-
45
-
-
84992463479
-
Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation
-
Künne, T. et al. Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol. Cell 63, 852–864 (2016)
-
(2016)
Mol. Cell
, vol.63
, pp. 852-864
-
-
Künne, T.1
-
46
-
-
85019885491
-
Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation
-
COI: 1:CAS:528:DC%2BC1cXjt1Wmurs%3D
-
Musharova, O. et al. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation. Nucleic Acids Res. 45, 3297–3307 (2017)
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. 3297-3307
-
-
Musharova, O.1
-
47
-
-
78651083184
-
A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair
-
COI: 1:CAS:528:DC%2BC3MXhsl2qtLs%3D
-
Babu, M. et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 79, 484–502 (2011)
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 484-502
-
-
Babu, M.1
-
48
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR-Cas adaptation
-
COI: 1:CAS:528:DC%2BC2MXjt1Snu7k%3D
-
Heler, R. et al. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519, 199–202 (2015)
-
(2015)
Nature
, vol.519
, pp. 199-202
-
-
Heler, R.1
-
49
-
-
84905013832
-
Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages
-
COI: 1:CAS:528:DC%2BC2cXitVWgsbrE
-
Hynes, A. P., Villion, M. & Moineau, S. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nat. Commun. 5, 4399 (2014)
-
(2014)
Nat. Commun.
, vol.5
-
-
Hynes, A.P.1
Villion, M.2
Moineau, S.3
-
50
-
-
85009789314
-
Mutations in Cas9 enhance the rate of acquisition of viral spacer sequences during the CRISPR-Cas immune response
-
COI: 1:CAS:528:DC%2BC28XitFGitbjI
-
Heler, R. et al. Mutations in Cas9 enhance the rate of acquisition of viral spacer sequences during the CRISPR-Cas immune response. Mol. Cell 65, 168–175 (2017)
-
(2017)
Mol. Cell
, vol.65
, pp. 168-175
-
-
Heler, R.1
-
51
-
-
85007529875
-
Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system
-
Hoyland-Kroghsbo, N. M. et al. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. Proc. Natl Acad. Sci. USA 114, 131–135 (2017)
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. 131-135
-
-
Hoyland-Kroghsbo, N.M.1
-
52
-
-
85006707424
-
Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems
-
COI: 1:CAS:528:DC%2BC28XhvFWgurvI
-
Patterson, A. G. et al. Quorum sensing controls adaptive immunity through the regulation of multiple CRISPR-Cas systems. Mol. Cell 64, 1102–1108 (2016)
-
(2016)
Mol. Cell
, vol.64
, pp. 1102-1108
-
-
Patterson, A.G.1
-
53
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
COI: 1:CAS:528:DC%2BD1cXhvVOlsL8%3D
-
Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008)
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
-
54
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
COI: 1:CAS:528:DC%2BD1MXjs1WksLo%3D
-
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009)
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Almendros, C.4
-
55
-
-
84958965794
-
Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC28XhtVaku73E
-
Elmore, J. R. et al. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev. 30, 447–459 (2016)
-
(2016)
Genes Dev.
, vol.30
, pp. 447-459
-
-
Elmore, J.R.1
-
56
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
COI: 1:CAS:528:DC%2BC3cXltlCntQ%3D%3D
-
Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010)
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
57
-
-
85027535502
-
Broad targeting specificity during bacterial Type III CRISPR-Cas immunity constrains viral escape
-
COI: 1:CAS:528:DC%2BC2sXhtlGrsLfO
-
Pyenson, N. C., Gayvert, K., Varble, A., Elemento, O. & Marraffini, L. A. Broad targeting specificity during bacterial Type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe 22, 343–353 (2017)
-
(2017)
Cell Host Microbe
, vol.22
, pp. 343-353
-
-
Pyenson, N.C.1
Gayvert, K.2
Varble, A.3
Elemento, O.4
Marraffini, L.A.5
-
58
-
-
84908456823
-
Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
-
COI: 1:CAS:528:DC%2BC2cXhvVCnu7vI
-
Goldberg, G. W., Jiang, W., Bikard, D. & Marraffini, L. A. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514, 633–637 (2014)
-
(2014)
Nature
, vol.514
, pp. 633-637
-
-
Goldberg, G.W.1
Jiang, W.2
Bikard, D.3
Marraffini, L.A.4
-
59
-
-
84930085853
-
Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity
-
COI: 1:CAS:528:DC%2BC2MXotVKnu7g%3D
-
Samai, P. et al. Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161, 1164–1174 (2015)
-
(2015)
Cell
, vol.161
, pp. 1164-1174
-
-
Samai, P.1
-
60
-
-
84874195392
-
A novel interference mechanism by a type IIIB CRISPR-Cmr module in
-
COI: 1:CAS:528:DC%2BC3sXivFOksL4%3D
-
Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87, 1088–1099 (2013)
-
(2013)
Sulfolobus. Mol. Microbiol.
, vol.87
, pp. 1088-1099
-
-
Deng, L.1
Garrett, R.A.2
Shah, S.A.3
Peng, X.4
She, Q.5
-
61
-
-
84941143049
-
An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference
-
COI: 1:CAS:528:DC%2BC2MXhsFSrtb7N
-
Peng, W., Feng, M., Feng, X., Liang, Y. X. & She, Q. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res. 43, 406–417 (2015)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 406-417
-
-
Peng, W.1
Feng, M.2
Feng, X.3
Liang, Y.X.4
She, Q.5
-
62
-
-
85044168315
-
Cas4 facilitates PAM-compatible spacer selection during CRISPR adaptation
-
COI: 1:CAS:528:DC%2BC1cXmsVegsrY%3D
-
Kieper, S. N. et al. Cas4 facilitates PAM-compatible spacer selection during CRISPR adaptation. Cell Rep. 22, 3377–3384 (2018)
-
(2018)
Cell Rep.
, vol.22
, pp. 3377-3384
-
-
Kieper, S.N.1
-
63
-
-
85044055719
-
Cas4-dependent prespacer processing ensures high-fidelity programming of CRISPR arrays
-
COI: 1:CAS:528:DC%2BC1cXmt1alu78%3D
-
Lee, H., Zhou, Y., Taylor, D. W. & Sashital, D. G. Cas4-dependent prespacer processing ensures high-fidelity programming of CRISPR arrays. Mol. Cell 70, 48–59 (2018)
-
(2018)
Mol. Cell
, vol.70
, pp. 48-59
-
-
Lee, H.1
Zhou, Y.2
Taylor, D.W.3
Sashital, D.G.4
-
64
-
-
85047261088
-
Cas4 nucleases define the PAM, length, and orientation of DNA fragments integrated at CRISPR loci
-
COI: 1:CAS:528:DC%2BC1cXhtV2lur3F
-
Shiimori, M., Garrett, S. C., Graveley, B. R. & Terns, M. P. Cas4 nucleases define the PAM, length, and orientation of DNA fragments integrated at CRISPR loci. Mol. Cell 70, 814–824 (2018)
-
(2018)
Mol. Cell
, vol.70
, pp. 814-824
-
-
Shiimori, M.1
Garrett, S.C.2
Graveley, B.R.3
Terns, M.P.4
-
65
-
-
84959419241
-
Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
-
Silas, S. et al. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science 351, aad4234 (2016)
-
(2016)
Science
, vol.351
, pp. aad4234
-
-
Silas, S.1
-
66
-
-
84899087750
-
Degenerate target sites mediate rapid primed CRISPR adaptation
-
COI: 1:CAS:528:DC%2BC2cXmtlags7s%3D
-
Fineran, P. C. et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl Acad. Sci. USA 111, E1629–E1638 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E1629-E1638
-
-
Fineran, P.C.1
-
67
-
-
85021182270
-
Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity
-
COI: 1:CAS:528:DC%2BC2sXmsFeju7Y%3D
-
Rollins, M. F. et al. Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proc. Natl Acad. Sci. USA 114, E5113–E5121 (2017)
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. E5113-E5121
-
-
Rollins, M.F.1
-
68
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
COI: 1:CAS:528:DC%2BC38XlvFyisr4%3D
-
Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46, 595–605 (2012)
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
-
69
-
-
84977273804
-
Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex
-
COI: 1:CAS:528:DC%2BC28XhtVWlu7zK
-
Semenova, E. et al. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex. Proc. Natl Acad. Sci. USA 113, 7626–7631 (2016)
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 7626-7631
-
-
Semenova, E.1
-
70
-
-
84990860399
-
Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC28Xhs1amtLrN
-
Staals, R. H. et al. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat. Commun. 7, 12853 (2016)
-
(2016)
Nat. Commun.
, vol.7
-
-
Staals, R.H.1
-
71
-
-
84946562795
-
Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC2MXhslGltbvP
-
Redding, S. et al. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163, 854–865 (2015)
-
(2015)
Cell
, vol.163
, pp. 854-865
-
-
Redding, S.1
-
72
-
-
84926226607
-
Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex
-
COI: 1:CAS:528:DC%2BC2MXjvFCis74%3D
-
Blosser, T. R. et al. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol. Cell 58, 60–70 (2015)
-
(2015)
Mol. Cell
, vol.58
, pp. 60-70
-
-
Blosser, T.R.1
-
73
-
-
84959407493
-
CRISPR interference and priming varies with individual spacer sequences
-
COI: 1:CAS:528:DC%2BC28XhsVektbjO
-
Xue, C. et al. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 43, 10831–10847 (2015)
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10831-10847
-
-
Xue, C.1
-
74
-
-
84995642200
-
Conformational control of cascade interference and priming activities in CRISPR immunity
-
COI: 1:CAS:528:DC%2BC28XhslOqsLzP
-
Xue, C., Whitis, N. R. & Sashital, D. G. Conformational control of cascade interference and priming activities in CRISPR immunity. Mol. Cell 64, 826–834 (2016)
-
(2016)
Mol. Cell
, vol.64
, pp. 826-834
-
-
Xue, C.1
Whitis, N.R.2
Sashital, D.G.3
-
75
-
-
85016138679
-
The influence of copy-number of targeted extrachromosomal genetic elements on the outcome of CRISPR-Cas defense
-
Severinov, K., Ispolatov, I. & Semenova, E. The influence of copy-number of targeted extrachromosomal genetic elements on the outcome of CRISPR-Cas defense. Front. Mol. Biosci. 3, 45 (2016)
-
(2016)
Front. Mol. Biosci.
, vol.3
, pp. 45
-
-
Severinov, K.1
Ispolatov, I.2
Semenova, E.3
-
76
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko, K. A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3, 945 (2012)
-
(2012)
Nat. Commun.
, vol.3
-
-
Datsenko, K.A.1
-
77
-
-
84860433123
-
CRISPR interference directs strand specific spacer acquisition
-
COI: 1:CAS:528:DC%2BC38XmvFOntr4%3D
-
Swarts, D. C., Mosterd, C., van Passel, M. W. & Brouns, S. J. CRISPR interference directs strand specific spacer acquisition. PLoS ONE 7, e35888 (2012)
-
(2012)
PLoS ONE
, vol.7
-
-
Swarts, D.C.1
Mosterd, C.2
van Passel, M.W.3
Brouns, S.J.4
-
78
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016)
-
(2016)
Science
, vol.353
, pp. aad5147
-
-
Mohanraju, P.1
-
79
-
-
84975270845
-
Molecular recordings by directed CRISPR spacer acquisition
-
Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 (2016)
-
(2016)
Science
, vol.353
, pp. aaf1175
-
-
Shipman, S.L.1
Nivala, J.2
Macklis, J.D.3
Church, G.M.4
-
80
-
-
85025473790
-
CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria
-
COI: 1:CAS:528:DC%2BC2sXhtFOjtrfN
-
Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345–349 (2017)
-
(2017)
Nature
, vol.547
, pp. 345-349
-
-
Shipman, S.L.1
Nivala, J.2
Macklis, J.D.3
Church, G.M.4
-
81
-
-
85034818810
-
Multiplex recording of cellular events over time on CRISPR biological tape
-
COI: 1:CAS:528:DC%2BC2sXhvFGmtr3N
-
Sheth, R. U., Yim, S. S., Wu, F. L. & Wang, H. H. Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017)
-
(2017)
Science
, vol.358
, pp. 1457-1461
-
-
Sheth, R.U.1
Yim, S.S.2
Wu, F.L.3
Wang, H.H.4
-
82
-
-
85033553630
-
The CRISPR spacer space is dominated by sequences from species-specific mobilomes
-
COI: 1:CAS:528:DC%2BC1cXitFCit7jJ
-
Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397–17 (2017)
-
(2017)
mBio
, vol.8
, pp. 1317-1397
-
-
Shmakov, S.A.1
-
83
-
-
85029226165
-
On the origin of reverse transcriptase-using CRISPR-Cas systems and their hyperdiverse, enigmatic spacer repertoires
-
Silas, S. et al. On the origin of reverse transcriptase-using CRISPR-Cas systems and their hyperdiverse, enigmatic spacer repertoires. mBio 8, e00897–17 (2017)
-
(2017)
mBio
, vol.8
, pp. 817-897
-
-
Silas, S.1
|