-
1
-
-
84899134190
-
CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity
-
1 Barrangou, R., Marraffini, L.A., CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell 54 (2014), 234–244.
-
(2014)
Mol. Cell
, vol.54
, pp. 234-244
-
-
Barrangou, R.1
Marraffini, L.A.2
-
2
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
2 Doudna, J.A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
3
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
This article describes computational approaches for identification of CRISPR-cas loci and an updated classification of CRISPR-Cas systems. The two classes are introduced for the first time, and a comprehensive census of CRISPR-Cas types and subtypes in archaeal and bacterial genomes is presented.
-
3•• Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J., Charpentier, E., Haft, D.H., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736 This article describes computational approaches for identification of CRISPR-cas loci and an updated classification of CRISPR-Cas systems. The two classes are introduced for the first time, and a comprehensive census of CRISPR-Cas types and subtypes in archaeal and bacterial genomes is presented.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
Barrangou, R.7
Brouns, S.J.8
Charpentier, E.9
Haft, D.H.10
-
4
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
4 Marraffini, L.A., CRISPR-Cas immunity in prokaryotes. Nature 526 (2015), 55–61.
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
5
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
5 Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., van der Oost, J., Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 353, 2016, aad5147.
-
(2016)
Science
, vol.353
, pp. aad5147
-
-
Mohanraju, P.1
Makarova, K.S.2
Zetsche, B.3
Zhang, F.4
Koonin, E.V.5
van der Oost, J.6
-
6
-
-
84954537942
-
CRISPR-Cas adaptation: insights into the mechanism of action
-
6 Amitai, G., Sorek, R., CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14 (2016), 67–76.
-
(2016)
Nat. Rev. Microbiol.
, vol.14
, pp. 67-76
-
-
Amitai, G.1
Sorek, R.2
-
7
-
-
84959294548
-
Adaptation in CRISPR-Cas systems
-
7 Sternberg, S.H., Richter, H., Charpentier, E., Qimron, U., Adaptation in CRISPR-Cas systems. Mol. Cell 61 (2016), 797–808.
-
(2016)
Mol. Cell
, vol.61
, pp. 797-808
-
-
Sternberg, S.H.1
Richter, H.2
Charpentier, E.3
Qimron, U.4
-
8
-
-
84924740446
-
Cutting it close: CRISPR-associated endoribonuclease structure and function
-
8 Hochstrasser, M.L., Doudna, J.A., Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 40 (2015), 58–66.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 58-66
-
-
Hochstrasser, M.L.1
Doudna, J.A.2
-
9
-
-
84942746261
-
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
-
9 Charpentier, E., Richter, H., van der Oost, J., White, M.F., Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39 (2015), 428–441.
-
(2015)
FEMS Microbiol. Rev.
, vol.39
, pp. 428-441
-
-
Charpentier, E.1
Richter, H.2
van der Oost, J.3
White, M.F.4
-
10
-
-
84939232427
-
DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
-
10 Plagens, A., Richter, H., Charpentier, E., Randau, L., DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol. Rev. 39 (2015), 442–463.
-
(2015)
FEMS Microbiol. Rev.
, vol.39
, pp. 442-463
-
-
Plagens, A.1
Richter, H.2
Charpentier, E.3
Randau, L.4
-
11
-
-
84937431545
-
Structure principles of CRISPR-Cas surveillance and effector complexes
-
11 Tsui, T.K., Li, H., Structure principles of CRISPR-Cas surveillance and effector complexes. Annu. Rev. Biophys. 44 (2015), 229–255.
-
(2015)
Annu. Rev. Biophys.
, vol.44
, pp. 229-255
-
-
Tsui, T.K.1
Li, H.2
-
12
-
-
85010207605
-
Diversity and evolution of class 2 CRISPR-Cas systems
-
This paper describes the latest developments in the discovery of novel variants of Class 2 CRISPR-Cas systems and reveals multiple contributions of mobile elements to the evolution of CRISPR-Cas.
-
12• Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O.O., Gootenberg, J.S., Makarova, K.S., Wolf, Y.I., et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15 (2017), 169–182 This paper describes the latest developments in the discovery of novel variants of Class 2 CRISPR-Cas systems and reveals multiple contributions of mobile elements to the evolution of CRISPR-Cas.
-
(2017)
Nat. Rev. Microbiol.
, vol.15
, pp. 169-182
-
-
Shmakov, S.1
Smargon, A.2
Scott, D.3
Cox, D.4
Pyzocha, N.5
Yan, W.6
Abudayyeh, O.O.7
Gootenberg, J.S.8
Makarova, K.S.9
Wolf, Y.I.10
-
13
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
-
13 Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60 (2015), 385–397.
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
Semenova, E.6
Minakhin, L.7
Joung, J.8
Konermann, S.9
Severinov, K.10
-
14
-
-
84902203191
-
Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity
-
14 Krupovic, M., Makarova, K.S., Forterre, P., Prangishvili, D., Koonin, E.V., Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol., 12, 2014, 36.
-
(2014)
BMC Biol.
, vol.12
, pp. 36
-
-
Krupovic, M.1
Makarova, K.S.2
Forterre, P.3
Prangishvili, D.4
Koonin, E.V.5
-
15
-
-
84908506412
-
CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease
-
15 Hickman, A.B., Dyda, F., CRISPR-Cas immunity and mobile DNA: a new superfamily of DNA transposons encoding a Cas1 endonuclease. Mob. DNA, 5, 2014, 23.
-
(2014)
Mob. DNA
, vol.5
, pp. 23
-
-
Hickman, A.B.1
Dyda, F.2
-
16
-
-
84961377128
-
Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems
-
16 Krupovic, M., Koonin, E.V., Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Curr. Opin. Microbiol. 31 (2016), 25–33.
-
(2016)
Curr. Opin. Microbiol.
, vol.31
, pp. 25-33
-
-
Krupovic, M.1
Koonin, E.V.2
-
17
-
-
84923640664
-
Evolution of adaptive immunity from transposable elements combined with innate immune systems
-
This work outlines the scenario of evolution of CRISPR-Cas from a casposon and an ancestral innate immunity locus, and draws parallels between the evolutionary trajectories of adaptive immunity in prokaryotes and animals.
-
17•• Koonin, E.V., Krupovic, M., Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16 (2015), 184–192 This work outlines the scenario of evolution of CRISPR-Cas from a casposon and an ancestral innate immunity locus, and draws parallels between the evolutionary trajectories of adaptive immunity in prokaryotes and animals.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 184-192
-
-
Koonin, E.V.1
Krupovic, M.2
-
18
-
-
84959059091
-
Mechanisms of DNA transposition
-
MDNA3-0034-2014
-
18 Hickman, A.B., Dyda, F., Mechanisms of DNA transposition. Microbiol. Spectr., 3, 2015 MDNA3-0034-2014.
-
(2015)
Microbiol. Spectr.
, vol.3
-
-
Hickman, A.B.1
Dyda, F.2
-
19
-
-
85103345199
-
-
3rd ed. ASM Press Washington, DC
-
19 Craig, N.L., Chandler, M., Gellert, M., Lambowitz, A.M., Rice, P.A., Sandmeyer, S.B., (eds.) Mobile DNA III, 3rd ed., 2015, ASM Press, Washington, DC.
-
(2015)
Mobile DNA III
-
-
Craig, N.L.1
Chandler, M.2
Gellert, M.3
Lambowitz, A.M.4
Rice, P.A.5
Sandmeyer, S.B.6
-
20
-
-
84961336907
-
The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications
-
The first demosntration of the integrase activity of the casposase in vitro.
-
20•• Hickman, A.B., Dyda, F., The casposon-encoded Cas1 protein from Aciduliprofundum boonei is a DNA integrase that generates target site duplications. Nucleic Acids Res. 43 (2015), 10576–10587 The first demosntration of the integrase activity of the casposase in vitro.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10576-10587
-
-
Hickman, A.B.1
Dyda, F.2
-
21
-
-
85016146308
-
Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems
-
This work investigates the mechanism of integration by the casposase and demonstrates the close similarity between the casposase target site and the leader-repeat junction in CRISPR-Cas.
-
21•• Béguin, P., Charpin, N., Koonin, E.V., Forterre, P., Krupovic, M., Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Res. 44 (2016), 10367–10376 This work investigates the mechanism of integration by the casposase and demonstrates the close similarity between the casposase target site and the leader-repeat junction in CRISPR-Cas.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 10367-10376
-
-
Béguin, P.1
Charpin, N.2
Koonin, E.V.3
Forterre, P.4
Krupovic, M.5
-
22
-
-
85007236066
-
Recent mobility of casposons, self-synthesizing transposons at the origin of the CRISPR-Cas immunity
-
This work takes advantage of the availability of many genomes of Methanosarcina mazei strains with multiple casposon insertions to demonstrate recent mobility of casposons, thus showing that these are active MGE.
-
22• Krupovic, M., Shmakov, S., Makarova, K.S., Forterre, P., Koonin, E.V., Recent mobility of casposons, self-synthesizing transposons at the origin of the CRISPR-Cas immunity. Genome Biol. Evol. 8 (2016), 375–386 This work takes advantage of the availability of many genomes of Methanosarcina mazei strains with multiple casposon insertions to demonstrate recent mobility of casposons, thus showing that these are active MGE.
-
(2016)
Genome Biol. Evol.
, vol.8
, pp. 375-386
-
-
Krupovic, M.1
Shmakov, S.2
Makarova, K.S.3
Forterre, P.4
Koonin, E.V.5
-
23
-
-
84905451755
-
Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery
-
23 Makarova, K.S., Krupovic, M., Koonin, E.V., Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front. Microbiol., 5, 2014, 354.
-
(2014)
Front. Microbiol.
, vol.5
, pp. 354
-
-
Makarova, K.S.1
Krupovic, M.2
Koonin, E.V.3
-
24
-
-
33645227457
-
Self-synthesizing DNA transposons in eukaryotes
-
24 Kapitonov, V.V., Jurka, J., Self-synthesizing DNA transposons in eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 4540–4545.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 4540-4545
-
-
Kapitonov, V.V.1
Jurka, J.2
-
25
-
-
33846939973
-
Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses
-
25 Pritham, E.J., Putliwala, T., Feschotte, C., Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390 (2007), 3–17.
-
(2007)
Gene
, vol.390
, pp. 3-17
-
-
Pritham, E.J.1
Putliwala, T.2
Feschotte, C.3
-
26
-
-
84923103071
-
Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution
-
26 Krupovic, M., Koonin, E.V., Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13 (2015), 105–115.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 105-115
-
-
Krupovic, M.1
Koonin, E.V.2
-
27
-
-
84901235660
-
Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses
-
27 Krupovic, M., Bamford, D.H., Koonin, E.V., Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct, 9, 2014, 6.
-
(2014)
Biol. Direct
, vol.9
, pp. 6
-
-
Krupovic, M.1
Bamford, D.H.2
Koonin, E.V.3
-
28
-
-
84937511221
-
Origins and evolution of viruses of eukaryotes: the ultimate modularity
-
28 Koonin, E.V., Dolja, V.V., Krupovic, M., Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480 (2015), 2–25.
-
(2015)
Virology
, vol.479-480
, pp. 2-25
-
-
Koonin, E.V.1
Dolja, V.V.2
Krupovic, M.3
-
29
-
-
79953806385
-
A virophage at the origin of large DNA transposons
-
29 Fischer, M.G., Suttle, C.A., A virophage at the origin of large DNA transposons. Science 332 (2011), 231–234.
-
(2011)
Science
, vol.332
, pp. 231-234
-
-
Fischer, M.G.1
Suttle, C.A.2
-
30
-
-
80052730552
-
RNA-mediated epigenetic programming of genome rearrangements
-
30 Nowacki, M., Shetty, K., Landweber, L.F., RNA-mediated epigenetic programming of genome rearrangements. Annu. Rev. Genom. Hum. Genet. 12 (2011), 367–389.
-
(2011)
Annu. Rev. Genom. Hum. Genet.
, vol.12
, pp. 367-389
-
-
Nowacki, M.1
Shetty, K.2
Landweber, L.F.3
-
32
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
32 Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I., Koonin, E.V., A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct, 1, 2006, 7.
-
(2006)
Biol. Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
33
-
-
66349134987
-
Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
-
33 Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S.M., Ma, W., Doudna, J.A., Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17 (2009), 904–912.
-
(2009)
Structure
, vol.17
, pp. 904-912
-
-
Wiedenheft, B.1
Zhou, K.2
Jinek, M.3
Coyle, S.M.4
Ma, W.5
Doudna, J.A.6
-
34
-
-
78651083184
-
A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair
-
34 Babu, M., Beloglazova, N., Flick, R., Graham, C., Skarina, T., Nocek, B., Gagarinova, A., Pogoutse, O., Brown, G., Binkowski, A., et al. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 79 (2011), 484–502.
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 484-502
-
-
Babu, M.1
Beloglazova, N.2
Flick, R.3
Graham, C.4
Skarina, T.5
Nocek, B.6
Gagarinova, A.7
Pogoutse, O.8
Brown, G.9
Binkowski, A.10
-
35
-
-
84888838217
-
Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity
-
35 Kim, T.Y., Shin, M., Huynh Thi Yen, L., Kim, J.S., Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity. Biochem. Biophys. Res. Commun. 441 (2013), 720–725.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.441
, pp. 720-725
-
-
Kim, T.Y.1
Shin, M.2
Huynh Thi Yen, L.3
Kim, J.S.4
-
36
-
-
84861357119
-
Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax
-
36 Plagens, A., Tjaden, B., Hagemann, A., Randau, L., Hensel, R., Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J. Bacteriol. 194 (2012), 2491–2500.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 2491-2500
-
-
Plagens, A.1
Tjaden, B.2
Hagemann, A.3
Randau, L.4
Hensel, R.5
-
37
-
-
84959419241
-
Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein
-
37 Silas, S., Mohr, G., Sidote, D.J., Markham, L.M., Sanchez-Amat, A., Bhaya, D., Lambowitz, A.M., Fire, A.Z., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science, 351, 2016, aad4234.
-
(2016)
Science
, vol.351
, pp. aad4234
-
-
Silas, S.1
Mohr, G.2
Sidote, D.J.3
Markham, L.M.4
Sanchez-Amat, A.5
Bhaya, D.6
Lambowitz, A.M.7
Fire, A.Z.8
-
38
-
-
84902010986
-
Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
-
38 Nunez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W., Doudna, J.A., Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21 (2014), 528–534.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 528-534
-
-
Nunez, J.K.1
Kranzusch, P.J.2
Noeske, J.3
Wright, A.V.4
Davies, C.W.5
Doudna, J.A.6
-
39
-
-
84924664059
-
Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
-
A detailed characterization of the role of the Cas1–Cas2 complex and its two subunits in spacer acquisition.
-
39•• Nunez, J.K., Lee, A.S., Engelman, A., Doudna, J.A., Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519 (2015), 193–198 A detailed characterization of the role of the Cas1–Cas2 complex and its two subunits in spacer acquisition.
-
(2015)
Nature
, vol.519
, pp. 193-198
-
-
Nunez, J.K.1
Lee, A.S.2
Engelman, A.3
Doudna, J.A.4
-
40
-
-
55549123481
-
An equivalent metal ion in one- and two-metal-ion catalysis
-
40 Yang, W., An equivalent metal ion in one- and two-metal-ion catalysis. Nat. Struct. Mol. Biol. 15 (2008), 1228–1231.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1228-1231
-
-
Yang, W.1
-
41
-
-
84975129691
-
Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system
-
41 Wilkinson, M.E., Nakatani, Y., Staals, R.H., Kieper, S.N., Opel-Reading, H.K., McKenzie, R.E., Fineran, P.C., Krause, K.L., Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system. Biochem. J. 473 (2016), 1063–1072.
-
(2016)
Biochem. J.
, vol.473
, pp. 1063-1072
-
-
Wilkinson, M.E.1
Nakatani, Y.2
Staals, R.H.3
Kieper, S.N.4
Opel-Reading, H.K.5
McKenzie, R.E.6
Fineran, P.C.7
Krause, K.L.8
-
42
-
-
84941907747
-
Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
-
This work shows that Cas2 is not required for the disintegration reaction catalyzed by Cas1 and suggests that the inherent sequence specificity of cis the principal specificity determinant of spacer acquisition.
-
42• Rollie, C., Schneider, S., Brinkmann, A.S., Bolt, E.L., White, M.F., Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife, 4, 2015, e08716 This work shows that Cas2 is not required for the disintegration reaction catalyzed by Cas1 and suggests that the inherent sequence specificity of cis the principal specificity determinant of spacer acquisition.
-
(2015)
eLife
, vol.4
, pp. e08716
-
-
Rollie, C.1
Schneider, S.2
Brinkmann, A.S.3
Bolt, E.L.4
White, M.F.5
-
43
-
-
84990233575
-
Protecting genome integrity during CRISPR immune adaptation
-
This work reveals the details of the recognition of the spacer insertion site at the leader-repeat junction by the Cas1–Cas2 complex and provides evidence in suort of the model in which the palindromic ends of the repeat are recognized by distal Cas1 active sites.
-
43•• Wright, A.V., Doudna, J.A., Protecting genome integrity during CRISPR immune adaptation. Nat. Struct. Mol. Biol. 23 (2016), 876–883 This work reveals the details of the recognition of the spacer insertion site at the leader-repeat junction by the Cas1–Cas2 complex and provides evidence in suort of the model in which the palindromic ends of the repeat are recognized by distal Cas1 active sites.
-
(2016)
Nat. Struct. Mol. Biol.
, vol.23
, pp. 876-883
-
-
Wright, A.V.1
Doudna, J.A.2
-
44
-
-
84974693401
-
CRISPR immunological memory requires a host factor for specificity
-
This work demonstrates the requirement of E. coli integration host factor (IHF) for spacer integration into linear DNA by Cas1–Cas2. It is shown that IHF introduces a sharp bend into the target DNA molecule, allowing the Cas1–Cas2 integrase to catalyze the first integration reaction.
-
44• Nunez, J.K., Bai, L., Harrington, L.B., Hinder, T.L., Doudna, J.A., CRISPR immunological memory requires a host factor for specificity. Mol. Cell 62 (2016), 824–833 This work demonstrates the requirement of E. coli integration host factor (IHF) for spacer integration into linear DNA by Cas1–Cas2. It is shown that IHF introduces a sharp bend into the target DNA molecule, allowing the Cas1–Cas2 integrase to catalyze the first integration reaction.
-
(2016)
Mol. Cell
, vol.62
, pp. 824-833
-
-
Nunez, J.K.1
Bai, L.2
Harrington, L.B.3
Hinder, T.L.4
Doudna, J.A.5
-
45
-
-
85016160582
-
Asymmetric positioning of Cas1–2 complex and integration host factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system
-
45 Yoganand, K.N., Sivathanu, R., Nimkar, S., Anand, B., Asymmetric positioning of Cas1–2 complex and integration host factor induced DNA bending guide the unidirectional homing of protospacer in CRISPR-Cas type I-E system. Nucleic Acids Res. 45 (2017), 367–381.
-
(2017)
Nucleic Acids Res.
, vol.45
, pp. 367-381
-
-
Yoganand, K.N.1
Sivathanu, R.2
Nimkar, S.3
Anand, B.4
-
46
-
-
84946130269
-
Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems
-
This paper together with Ref. [47] discribe X-ray structures of the tertiary complexes of Cas1–Cas2 heterohexamers with the bound protospacers. The protospacer in Ref. [46] contains the PAM-complementary sequence, revealing site-specific interactions between this motif and the active site of Cas1.
-
46•• Wang, J., Li, J., Zhao, H., Sheng, G., Wang, M., Yin, M., Wang, Y., Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163 (2015), 840–853 This paper together with Ref. [47] discribe X-ray structures of the tertiary complexes of Cas1–Cas2 heterohexamers with the bound protospacers. The protospacer in Ref. [46] contains the PAM-complementary sequence, revealing site-specific interactions between this motif and the active site of Cas1.
-
(2015)
Cell
, vol.163
, pp. 840-853
-
-
Wang, J.1
Li, J.2
Zhao, H.3
Sheng, G.4
Wang, M.5
Yin, M.6
Wang, Y.7
-
47
-
-
84947495037
-
Foreign DNA capture during CRISPR-Cas adaptive immunity
-
47 Nunez, J.K., Harrington, L.B., Kranzusch, P.J., Engelman, A.N., Doudna, J.A., Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527 (2015), 535–538.
-
(2015)
Nature
, vol.527
, pp. 535-538
-
-
Nunez, J.K.1
Harrington, L.B.2
Kranzusch, P.J.3
Engelman, A.N.4
Doudna, J.A.5
-
48
-
-
67249133019
-
The persistence length of double stranded DNA determined using dark field tethered particle motion
-
48 Brinkers, S., Dietrich, H.R., de Groote, F.H., Young, I.T., Rieger, B., The persistence length of double stranded DNA determined using dark field tethered particle motion. J. Chem. Phys., 130, 2009, 215105.
-
(2009)
J. Chem. Phys.
, vol.130
, pp. 215105
-
-
Brinkers, S.1
Dietrich, H.R.2
de Groote, F.H.3
Young, I.T.4
Rieger, B.5
-
49
-
-
85017500616
-
Sequence-dependent persistence lengths of DNA
-
49 Mitchell, J.S., Glowacki, J., Grandchamp, A.E., Manning, R.S., Maddocks, J.H., Sequence-dependent persistence lengths of DNA. J. Chem. Theory Comput. 13 (2017), 1539–1555.
-
(2017)
J. Chem. Theory Comput.
, vol.13
, pp. 1539-1555
-
-
Mitchell, J.S.1
Glowacki, J.2
Grandchamp, A.E.3
Manning, R.S.4
Maddocks, J.H.5
-
50
-
-
39149142575
-
CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea
-
50 Sorek, R., Kunin, V., Hugenholtz, P., CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 6 (2008), 181–186.
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 181-186
-
-
Sorek, R.1
Kunin, V.2
Hugenholtz, P.3
-
51
-
-
84861410173
-
Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity
-
51 Kwon, A.R., Kim, J.H., Park, S.J., Lee, K.Y., Min, Y.H., Im, H., Lee, I., Lee, B.J., Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res. 40 (2012), 4216–4228.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 4216-4228
-
-
Kwon, A.R.1
Kim, J.H.2
Park, S.J.3
Lee, K.Y.4
Min, Y.H.5
Im, H.6
Lee, I.7
Lee, B.J.8
-
52
-
-
85012284419
-
New CRISPR-Cas systems from uncultivated microbes
-
52 Burstein, D., Harrington, L.B., Strutt, S.C., Probst, A.J., Anantharaman, K., Thomas, B.C., Doudna, J.A., Banfield, J.F., New CRISPR-Cas systems from uncultivated microbes. Nature 542 (2017), 237–241.
-
(2017)
Nature
, vol.542
, pp. 237-241
-
-
Burstein, D.1
Harrington, L.B.2
Strutt, S.C.3
Probst, A.J.4
Anantharaman, K.5
Thomas, B.C.6
Doudna, J.A.7
Banfield, J.F.8
|