메뉴 건너뛰기




Volumn 8, Issue 1, 2018, Pages

Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli

Author keywords

[No Author keywords available]

Indexed keywords

GUIDE RNA;

EID: 85050993796     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-018-29746-3     Document Type: Article
Times cited : (83)

References (60)
  • 1
    • 34047118522 scopus 로고    scopus 로고
    • CRISPR provides acquired resistance against viruses in prokaryotes
    • PID: 17379808
    • Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007)
    • (2007) Science , vol.315 , pp. 1709-1712
    • Barrangou, R.1
  • 2
    • 49649114086 scopus 로고    scopus 로고
    • Small CRISPR RNAs guide antiviral defense in prokaryotes
    • Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964, 10.1126/science.1159689 (2008)
    • (2008) Science , vol.321 , pp. 960-964
    • Brouns, S.J.1
  • 3
    • 57849137502 scopus 로고    scopus 로고
    • CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
    • Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845, 10.1126/science.1165771 (2008)
    • (2008) Science , vol.322 , pp. 1843-1845
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 4
    • 84988808534 scopus 로고    scopus 로고
    • CRISPR-Cas: Biology, mechanisms and relevance
    • Hille, F. & Charpentier, E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 371, https://doi.org/10.1098/rstb.2015.0496 (2016)
    • (2016) Philos Trans R Soc Lond B Biol Sci , vol.371
    • Hille, F.1    Charpentier, E.2
  • 5
    • 84920871112 scopus 로고    scopus 로고
    • The roles of CRISPR-Cas systems in adaptive immunity and beyond
    • Barrangou, R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol 32, 36–41, 10.1016/j.coi.2014.12.008 (2015)
    • (2015) Curr Opin Immunol , vol.32 , pp. 36-41
    • Barrangou, R.1
  • 6
    • 84922998282 scopus 로고    scopus 로고
    • Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation
    • Wei, Y., Terns, R. M. & Terns, M. P. Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29, 356–361, 10.1101/gad.257550.114 (2015)
    • (2015) Genes Dev , vol.29 , pp. 356-361
    • Wei, Y.1    Terns, R.M.2    Terns, M.P.3
  • 7
    • 84874619358 scopus 로고    scopus 로고
    • Strong bias in the bacterial CRISPR elements that confer immunity to phage
    • Paez-Espino, D. et al. Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun 4, 1430, 10.1038/ncomms2440 (2013)
    • (2013) Nat Commun , vol.4
    • Paez-Espino, D.1
  • 8
    • 84904019733 scopus 로고    scopus 로고
    • Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system
    • Arslan, Z., Hermanns, V., Wurm, R., Wagner, R. & Pul, U. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res 42, 7884–7893, 10.1093/nar/gku510 (2014)
    • (2014) Nucleic Acids Res , vol.42 , pp. 7884-7893
    • Arslan, Z.1    Hermanns, V.2    Wurm, R.3    Wagner, R.4    Pul, U.5
  • 9
    • 84902010986 scopus 로고    scopus 로고
    • Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
    • Nuñez, J. K. et al. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat Struct Mol Biol 21, 528–534, 10.1038/nsmb.2820, http://www.nature.com/nsmb/journal/v21/n6/abs/nsmb.2820.html#supplementary-information (2014)
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 528-534
    • Nuñez, J.K.1
  • 10
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109, E2579–2586, 10.1073/pnas.1208507109 (2012)
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 11
    • 84879016248 scopus 로고    scopus 로고
    • crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus
    • PID: 23535272
    • Karvelis, T. et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA biology 10, 841–851 (2013)
    • (2013) RNA biology , vol.10 , pp. 841-851
    • Karvelis, T.1
  • 12
    • 84922322005 scopus 로고    scopus 로고
    • Guide RNA functional modules direct Cas9 activity and orthogonality
    • PID: 25373540
    • Briner, A. E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Molecular cell 56, 333–339 (2014)
    • (2014) Molecular cell , vol.56 , pp. 333-339
    • Briner, A.E.1
  • 13
    • 80755145195 scopus 로고    scopus 로고
    • The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
    • PID: 21813460
    • Sapranauskas, R. et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic acids research 39, 9275–9282 (2011)
    • (2011) Nucleic acids research , vol.39 , pp. 9275-9282
    • Sapranauskas, R.1
  • 14
    • 38949214103 scopus 로고    scopus 로고
    • Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
    • Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401–1412, 10.1128/JB.01415-07 (2008)
    • (2008) J Bacteriol , vol.190 , pp. 1401-1412
    • Horvath, P.1
  • 15
    • 38949123143 scopus 로고    scopus 로고
    • Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
    • PID: 18065545
    • Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. Journal of bacteriology 190, 1390–1400 (2008)
    • (2008) Journal of bacteriology , vol.190 , pp. 1390-1400
    • Deveau, H.1
  • 16
    • 75749118174 scopus 로고    scopus 로고
    • Self versus non-self discrimination during CRISPR RNA-directed immunity
    • Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571, 10.1038/nature08703 (2010)
    • (2010) Nature , vol.463 , pp. 568-571
    • Marraffini, L.A.1    Sontheimer, E.J.2
  • 17
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740, 10.1099/mic.0.023960-0 (2009)
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.1    Diez-Villasenor, C.2    Garcia-Martinez, J.3    Almendros, C.4
  • 18
    • 34250662138 scopus 로고    scopus 로고
    • The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats
    • Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172, 10.1186/1471-2105-8-172 (2007)
    • (2007) BMC Bioinformatics , vol.8
    • Grissa, I.1    Vergnaud, G.2    Pourcel, C.3
  • 19
    • 84944449180 scopus 로고    scopus 로고
    • An updated evolutionary classification of CRISPR-Cas systems
    • Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722–736, 10.1038/nrmicro3569 (2015)
    • (2015) Nat Rev Microbiol , vol.13 , pp. 722-736
    • Makarova, K.S.1
  • 20
    • 85010207605 scopus 로고    scopus 로고
    • Diversity and evolution of class 2 CRISPR-Cas systems
    • Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15, 169–182, 10.1038/nrmicro.2016.184 (2017)
    • (2017) Nat Rev Microbiol , vol.15 , pp. 169-182
    • Shmakov, S.1
  • 21
    • 85012284419 scopus 로고    scopus 로고
    • New CRISPR-Cas systems from uncultivated microbes
    • Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241, 10.1038/nature21059 (2017)
    • (2017) Nature , vol.542 , pp. 237-241
    • Burstein, D.1
  • 22
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity
    • PID: 22745249
    • Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012)
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 23
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823, 10.1126/science.1231143 (2013)
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 24
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826, 10.1126/science.1232033 (2013)
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 25
    • 84942895870 scopus 로고    scopus 로고
    • Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera
    • Sun, Z. et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 6, 8322, 10.1038/ncomms9322 (2015)
    • (2015) Nat Commun , vol.6
    • Sun, Z.1
  • 26
    • 64449088715 scopus 로고    scopus 로고
    • Comparative analysis of CRISPR loci in lactic acid bacteria genomes
    • Horvath, P. et al. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131, 62–70, 10.1016/j.ijfoodmicro.2008.05.030 (2009)
    • (2009) Int J Food Microbiol , vol.131 , pp. 62-70
    • Horvath, P.1
  • 27
    • 84928786976 scopus 로고    scopus 로고
    • CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus
    • Paez-Espino, D. et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. MBio 6, 10.1128/mBio.00262-15 (2015)
    • (2015) MBio , vol.6
    • Paez-Espino, D.1
  • 28
    • 84922978235 scopus 로고    scopus 로고
    • Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus
    • Wei, Y., Chesne, M. T., Terns, R. M. & Terns, M. P. Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus. Nucleic Acids Res 43, 1749–1758, 10.1093/nar/gku1407 (2015)
    • (2015) Nucleic Acids Res , vol.43 , pp. 1749-1758
    • Wei, Y.1    Chesne, M.T.2    Terns, R.M.3    Terns, M.P.4
  • 29
    • 84886422518 scopus 로고    scopus 로고
    • Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus
    • Held, N. L., Herrera, A. & Whitaker, R. J. Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus. Environ Microbiol 15, 3065–3076, 10.1111/1462-2920.12146 (2013)
    • (2013) Environ Microbiol , vol.15 , pp. 3065-3076
    • Held, N.L.1    Herrera, A.2    Whitaker, R.J.3
  • 30
    • 84874195392 scopus 로고    scopus 로고
    • A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
    • Deng, L., Garrett, R. A., Shah, S. A., Peng, X. & She, Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol Microbiol 87, 1088–1099, 10.1111/mmi.12152 (2013)
    • (2013) Mol Microbiol , vol.87 , pp. 1088-1099
    • Deng, L.1    Garrett, R.A.2    Shah, S.A.3    Peng, X.4    She, Q.5
  • 31
    • 77956498326 scopus 로고    scopus 로고
    • Sequence- and structure-specific RNA processing by a CRISPR endonuclease
    • Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358, 10.1126/science.1192272 (2010)
    • (2010) Science , vol.329 , pp. 1355-1358
    • Haurwitz, R.E.1    Jinek, M.2    Wiedenheft, B.3    Zhou, K.4    Doudna, J.A.5
  • 32
    • 66349134987 scopus 로고    scopus 로고
    • Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense
    • Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912, 10.1016/j.str.2009.03.019 (2009)
    • (2009) Structure , vol.17 , pp. 904-912
    • Wiedenheft, B.1
  • 33
    • 84961952607 scopus 로고    scopus 로고
    • Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity
    • Ivancic-Bace, I., Cass, S. D., Wearne, S. J. & Bolt, E. L. Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 43, 10821–10830, 10.1093/nar/gkv1213 (2015)
    • (2015) Nucleic Acids Res , vol.43 , pp. 10821-10830
    • Ivancic-Bace, I.1    Cass, S.D.2    Wearne, S.J.3    Bolt, E.L.4
  • 34
    • 85028463381 scopus 로고    scopus 로고
    • On the global CRISPR array behavior in class I systems
    • Toms, A. & Barrangou, R. On the global CRISPR array behavior in class I systems. Biol Direct 12, 20, 10.1186/s13062-017-0193-2 (2017)
    • (2017) Biol Direct , vol.12
    • Toms, A.1    Barrangou, R.2
  • 35
    • 85008425651 scopus 로고    scopus 로고
    • Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28
    • Smargon, A. A. et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell 65, 618–630 e617, 10.1016/j.molcel.2016.12.023 (2017)
    • (2017) Mol Cell , vol.65 , pp. 618-630
    • Smargon, A.A.1
  • 36
    • 84887104139 scopus 로고    scopus 로고
    • Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
    • http://www.nature.com/nmeth/journal/v10/n11/abs/nmeth.2681.html#supplementary-information
    • Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Meth 10, 1116–1121, 10.1038/nmeth.2681, http://www.nature.com/nmeth/journal/v10/n11/abs/nmeth.2681.html#supplementary-information (2013)
    • (2013) Nat Meth , vol.10 , pp. 1116-1121
    • Esvelt, K.M.1
  • 37
    • 84927514894 scopus 로고    scopus 로고
    • Vivo genome editing using Staphylococcus aureus Cas9
    • Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191, 10.1038/nature14299, http://www.nature.com/nature/journal/v520/n7546/abs/nature14299.html#supplementary-information (2015)
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 38
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • PID: 21455174
    • Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011)
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 39
    • 33747038694 scopus 로고    scopus 로고
    • Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III
    • Pertzev, A. V. & Nicholson, A. W. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res 34, 3708–3721, 10.1093/nar/gkl459 (2006)
    • (2006) Nucleic Acids Res , vol.34 , pp. 3708-3721
    • Pertzev, A.V.1    Nicholson, A.W.2
  • 40
    • 84943595386 scopus 로고    scopus 로고
    • Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri
    • Sanozky-Dawes, R., Selle, K., O’Flaherty, S., Klaenhammer, T. & Barrangou, R. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri. Microbiology 161, 1752–1761, 10.1099/mic.0.000129 (2015)
    • (2015) Microbiology , vol.161 , pp. 1752-1761
    • Sanozky-Dawes, R.1    Selle, K.2    O’Flaherty, S.3    Klaenhammer, T.4    Barrangou, R.5
  • 41
    • 85018420169 scopus 로고    scopus 로고
    • Anti-CRISPR proteins: Counterattack of phages on bacterial defense (CRISPR/Cas) system
    • Chaudhary, K., Chattopadhyay, A. & Pratap, D. Anti-CRISPR proteins: Counterattack of phages on bacterial defense (CRISPR/Cas) system. J Cell Physiol, 10.1002/jcp.25877 (2017)
    • (2017) J Cell Physiol
    • Chaudhary, K.1    Chattopadhyay, A.2    Pratap, D.3
  • 42
    • 85028970470 scopus 로고    scopus 로고
    • An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9
    • Hynes, A. P. et al. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat Microbiol, 10.1038/s41564-017-0004-7 (2017)
    • (2017) Nat Microbiol
    • Hynes, A.P.1
  • 43
    • 85006307718 scopus 로고    scopus 로고
    • Naturally Occurring Off-Switches for CRISPR-Cas9
    • Pawluk, A. et al. Naturally Occurring Off-Switches for CRISPR-Cas9. Cell 167, 1829–1838 e1829, 10.1016/j.cell.2016.11.017 (2016)
    • (2016) Cell , vol.167 , pp. 1829-1838
    • Pawluk, A.1
  • 44
    • 84903175627 scopus 로고    scopus 로고
    • Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation
    • Li, M., Wang, R. & Xiang, H. Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation. Nucleic Acids Res 42, 7226–7235, 10.1093/nar/gku389 (2014)
    • (2014) Nucleic Acids Res , vol.42 , pp. 7226-7235
    • Li, M.1    Wang, R.2    Xiang, H.3
  • 45
    • 84895823059 scopus 로고    scopus 로고
    • Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
    • Li, M., Wang, R., Zhao, D. & Xiang, H. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res 42, 2483–2492, 10.1093/nar/gkt1154 (2014)
    • (2014) Nucleic Acids Res , vol.42 , pp. 2483-2492
    • Li, M.1    Wang, R.2    Zhao, D.3    Xiang, H.4
  • 46
    • 84928473578 scopus 로고    scopus 로고
    • CRISPR adaptation biases explain preference for acquisition of foreign DNA
    • Levy, A. et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520, 505–510, 10.1038/nature14302 (2015)
    • (2015) Nature , vol.520 , pp. 505-510
    • Levy, A.1
  • 47
    • 85021432928 scopus 로고    scopus 로고
    • Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex
    • Fagerlund, R. D. et al. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex. Proc Natl Acad Sci USA 114, E5122–E5128, 10.1073/pnas.1618421114 (2017)
    • (2017) Proc Natl Acad Sci USA , vol.114 , pp. E5122-E5128
    • Fagerlund, R.D.1
  • 48
    • 84990860399 scopus 로고    scopus 로고
    • Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system
    • Staals, R. H. et al. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat Commun 7, 12853, 10.1038/ncomms12853 (2016)
    • (2016) Nat Commun , vol.7
    • Staals, R.H.1
  • 49
    • 84899087750 scopus 로고    scopus 로고
    • Degenerate target sites mediate rapid primed CRISPR adaptation
    • Fineran, P. C. et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci USA 111, E1629–1638, 10.1073/pnas.1400071111 (2014)
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. E1629-E1638
    • Fineran, P.C.1
  • 50
    • 84994798354 scopus 로고    scopus 로고
    • CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration
    • McGinn, J. & Marraffini, L. A. CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration. Mol Cell 64, 616–623, 10.1016/j.molcel.2016.08.038 (2016)
    • (2016) Mol Cell , vol.64 , pp. 616-623
    • McGinn, J.1    Marraffini, L.A.2
  • 51
    • 85008608260 scopus 로고    scopus 로고
    • Deciphering, Communicating, and Engineering the CRISPR PAM
    • Leenay, R. T. & Beisel, C. L. Deciphering, Communicating, and Engineering the CRISPR PAM. J Mol Biol 429, 177–191, 10.1016/j.jmb.2016.11.024 (2017)
    • (2017) J Mol Biol , vol.429 , pp. 177-191
    • Leenay, R.T.1    Beisel, C.L.2
  • 52
    • 84979464834 scopus 로고    scopus 로고
    • Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems
    • Leenay, R. T. et al. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems. Mol Cell 62, 137–147, 10.1016/j.molcel.2016.02.031 (2016)
    • (2016) Mol Cell , vol.62 , pp. 137-147
    • Leenay, R.T.1
  • 53
    • 84937908208 scopus 로고    scopus 로고
    • Engineered CRISPR-Cas9 nucleases with altered PAM specificities
    • Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485, 10.1038/nature14592 (2015)
    • (2015) Nature , vol.523 , pp. 481-485
    • Kleinstiver, B.P.1
  • 54
    • 84986898390 scopus 로고    scopus 로고
    • Applications of CRISPR technologies in research and beyond
    • Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34, 933–941, 10.1038/nbt.3659 (2016)
    • (2016) Nat Biotechnol , vol.34 , pp. 933-941
    • Barrangou, R.1    Doudna, J.A.2
  • 55
    • 85050865793 scopus 로고    scopus 로고
    • CRISPRdisco: An automated pipeline for the discovery and analysis of CRISPR-Cas systems
    • epub ahead of print
    • Crawley, A. B., Henriksen, J. R. & Barrangou, R. CRISPRdisco: an automated pipeline for the discovery and analysis of CRISPR-Cas systems. The CRISPR Journal 1, epub ahead of print. (2018)
    • (2018) The CRISPR Journal , pp. 1
    • Crawley, A.B.1    Henriksen, J.R.2    Barrangou, R.3
  • 56
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: multiple sequence alignment with high accuracy and high throughput
    • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797, 10.1093/nar/gkh340 (2004)
    • (2004) Nucleic Acids Res , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 57
    • 84890330527 scopus 로고    scopus 로고
    • MEGA6: Molecular Evolutionary Genetics Analysis version 6.0
    • Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725–2729, 10.1093/molbev/mst197 (2013)
    • (2013) Mol Biol Evol , vol.30 , pp. 2725-2729
    • Tamura, K.1    Stecher, G.2    Peterson, D.3    Filipski, A.4    Kumar, S.5
  • 58
    • 84896733529 scopus 로고    scopus 로고
    • Crystal structure of Cas9 in complex with guide RNA and target DNA
    • PID: 24529477
    • Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014)
    • (2014) Cell , vol.156 , pp. 935-949
    • Nishimasu, H.1
  • 59
  • 60
    • 84988579306 scopus 로고    scopus 로고
    • Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks
    • Langdon, W. B. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 8, 1, 10.1186/s13040-014-0034-0 (2015)
    • (2015) BioData Min , vol.8
    • Langdon, W.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.