메뉴 건너뛰기




Volumn 19, Issue 6, 2017, Pages 1236-1246

Deep learning for healthcare: Review, opportunities and challenges

Author keywords

Biomedical informatics; Deep learning; Electronic health records; Genomics; Health care; Translational bioinformatics

Indexed keywords

BIOLOGY; DATA MINING; DIAGNOSTIC IMAGING; ELECTRONIC HEALTH RECORD; GENOMICS; HEALTH CARE DELIVERY; HUMAN; ORGANIZATION AND MANAGEMENT; TELEMEDICINE;

EID: 85050595396     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbx044     Document Type: Article
Times cited : (1998)

References (119)
  • 1
    • 84941197175 scopus 로고    scopus 로고
    • 12 November 2016, date last accessed
    • Precision Medicine Initiative (NIH). https://www.nih.gov/pre cision-medicine-initiative-cohort-program (12 November 2016, date last accessed).
    • Precision Medicine Initiative (NIH)
  • 2
    • 84978137128 scopus 로고    scopus 로고
    • Biomarker tests for molecularly targeted therapies - The key to unlocking precision medicine
    • Lyman GH, Moses HL. Biomarker tests for molecularly targeted therapies - the key to unlocking precision medicine. N Engl J Med 2016;375:4-6.
    • (2016) N Engl J Med , vol.375 , pp. 4-6
    • Lyman, G.H.1    Moses, H.L.2
  • 3
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-5.
    • (2015) N Engl J Med , vol.372 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 4
    • 84899480100 scopus 로고    scopus 로고
    • DriskkB: A large-scale disease-disease risk relationship knowledge base constructed from biomedical text
    • Xu R, Li L, Wang Q. dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text. BMC Bioinformatics 2014;15:105.
    • (2014) BMC Bioinformatics , vol.15 , pp. 105
    • Xu, R.1    Li, L.2    Wang, Q.3
  • 5
    • 84931089568 scopus 로고    scopus 로고
    • Phenome-driven disease genetics prediction toward drug discovery
    • Chen Y, Li L, Zhang G-Q, et al. Phenome-driven disease genetics prediction toward drug discovery. Bioinformatics 2015;31:i276-83.
    • (2015) Bioinformatics , vol.31 , pp. i276-i283
    • Chen, Y.1    Li, L.2    Zhang, G.-Q.3
  • 6
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11:333-7.
    • (2014) Nat Methods , vol.11 , pp. 333-337
    • Wang, B.1    Mezlini, A.M.2    Demir, F.3
  • 7
    • 84858329412 scopus 로고    scopus 로고
    • Data-driven prediction of drug effects and interactions
    • Tatonetti NP, Ye PP, Daneshjou R, et al. Data-driven prediction of drug effects and interactions. Sci Transl Med 2012;4:125ra31.
    • (2012) Sci Transl Med , vol.4 , pp. 125ra31
    • Tatonetti, N.P.1    Ye, P.P.2    Daneshjou, R.3
  • 8
    • 84940389461 scopus 로고    scopus 로고
    • Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials
    • Miotto R, Weng C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inform Assoc 2015;22:e141-50.
    • (2015) J Am Med Inform Assoc , vol.22 , pp. e141-e150
    • Miotto, R.1    Weng, C.2
  • 9
    • 84946040296 scopus 로고    scopus 로고
    • Identification of type 2 diabetes subgroups through topological analysis of patient similarity
    • Li L, Cheng W-Y, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015;7:311ra174.
    • (2015) Sci Transl Med , vol.7 , pp. 311ra174
    • Li, L.1    Cheng, W.-Y.2    Glicksberg, B.S.3
  • 10
    • 84929510967 scopus 로고    scopus 로고
    • Machine learning applications in genetics and genomics
    • Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet 2015;16:321-32.
    • (2015) Nat Rev Genet , vol.16 , pp. 321-332
    • Libbrecht, M.W.1    Noble, W.S.2
  • 11
    • 84964312486 scopus 로고    scopus 로고
    • Clinical risk prediction by exploring high-order feature correlations
    • Wang F, Zhang P, Wang X, et al. Clinical risk prediction by exploring high-order feature correlations. AMIA Annual Symposium 2014;2014:1170-9.
    • (2014) AMIA Annual Symposium , vol.2014 , pp. 1170-1179
    • Wang, F.1    Zhang, P.2    Wang, X.3
  • 12
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: Current issues and guidelines
    • Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008;77:81-97.
    • (2008) Int J Med Inform , vol.77 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 13
    • 84871854103 scopus 로고    scopus 로고
    • Next-generation phenotyping of electronic health records
    • Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc 2013;20:117-21.
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 117-121
    • Hripcsak, G.1    Albers, D.J.2
  • 14
    • 84861235431 scopus 로고    scopus 로고
    • Mining electronic health records: Towards better research applications and clinical care
    • Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012;13:395-405.
    • (2012) Nat Rev Genet , vol.13 , pp. 395-405
    • Jensen, P.B.1    Jensen, L.J.2    Brunak, S.3
  • 15
    • 84991833935 scopus 로고    scopus 로고
    • Big data application in biomedical research and health care: A literature review
    • Luo J, Wu M, Gopukumar D, et al. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights 2016;8:1-10.
    • (2016) Biomed Inform Insights , vol.8 , pp. 1-10
    • Luo, J.1    Wu, M.2    Gopukumar, D.3
  • 16
    • 84924415604 scopus 로고    scopus 로고
    • 15 August 2016, date last accessed
    • SNOMED CT. https://www.nlm.nih.gov/healthit/snomedct/index.html (15 August 2016, date last accessed).
    • SNOMED CT
  • 17
    • 0004348431 scopus 로고    scopus 로고
    • 15 August 2016, date last accessed
    • Unified Medical Language System (UMLS). https://www.nlm.nih.gov/research/umls/ (15 August 2016, date last accessed).
    • Unified Medical Language System (UMLS)
  • 18
    • 84870497957 scopus 로고    scopus 로고
    • 15 October 2016, date last accessed
    • ICD-9 Code. https://www.cms.gov/medicare-coverage-database/staticpages/icd-9-code-lookup.aspx (15 October 2016, date last accessed).
    • ICD-9 Code
  • 20
    • 84883142799 scopus 로고    scopus 로고
    • A method for inferring medical diagnoses from patient similarities
    • Gottlieb A, Stein GY, Ruppin E, et al. A method for inferring medical diagnoses from patient similarities. BMC Med 2013;11:194.
    • (2013) BMC Med , vol.11 , pp. 194
    • Gottlieb, A.1    Stein, G.Y.2    Ruppin, E.3
  • 22
    • 85018965000 scopus 로고    scopus 로고
    • A predictive model for medical events based on contextual embedding of temporal sequences
    • Farhan W, Wang Z, Huang Y, et al. A predictive model for medical events based on contextual embedding of temporal sequences. J Med Internet Res 2016;4:e39.
    • (2016) J Med Internet Res , vol.4
    • Farhan, W.1    Wang, Z.2    Huang, Y.3
  • 25
    • 84876672166 scopus 로고    scopus 로고
    • Machine learning paradigms for speech recognition: An overview
    • Deng L, Li X. Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 2013;21:1060-89.
    • (2013) IEEE Trans Audio Speech Lang Process , vol.21 , pp. 1060-1089
    • Deng, L.1    Li, X.2
  • 28
    • 85062471254 scopus 로고    scopus 로고
    • 4 August 2016, date last accessed
    • Google's DeepMind forms health unit to build medical software. https://www.bloomberg.com/news/articles/2016-0224/google-s-deepmind-forms-health-unit-to-build-medi cal-software (4 August 2016, date last accessed).
    • Google's DeepMind Forms Health Unit to Build Medical Software
  • 31
    • 0004135065 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Bengio Y. Practical recommendations for gradient-based training of deep architectures. Neural Netw 2012;2;437-78.
    • (2012) Neural Netw , vol.2 , pp. 437-478
    • Bengio, Y.1
  • 32
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85-117.
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 35
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015; 349:255-60.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 36
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-6.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 37
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn 2009;2:1-127.
    • (2009) Found Trends Mach Learn , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 38
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pre-training help deep learning?
    • Erhan D, Bengio Y, Courville A, et al. Why does unsupervised pre-training help deep learning? J Mach Learn Res 2010;11:625-60.
    • (2010) J Mach Learn Res , vol.11 , pp. 625-660
    • Erhan, D.1    Bengio, Y.2    Courville, A.3
  • 39
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava N, Hinton GE, Krizhevsky A. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929-58.
    • (2014) J Mach Learn Res , vol.15 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.E.2    Krizhevsky, A.3
  • 41
  • 45
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition
    • Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag 2012;29:82-97.
    • (2012) IEEE Signal Process Mag , vol.29 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 46
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. J Mach Learn Res 2011;12:2493-537.
    • (2011) J Mach Learn Res , vol.12 , pp. 2493-2537
    • Collobert, R.1    Weston, J.2    Bottou, L.3
  • 48
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 49
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-18.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 50
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    • Alipanahi B, Delong A, Weirauch MT, et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015;33:831-8.
    • (2015) Nat Biotechnol , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3
  • 51
    • 84920873973 scopus 로고    scopus 로고
    • Early diagnosis of Alzheimer's disease with deep learning
    • Beijing, China
    • Liu S, Liu S, Cai W, et al. Early diagnosis of Alzheimer's disease with deep learning. In: International Symposium on Biomedical Imaging, Beijing, China 2014, 1015-18.
    • (2014) International Symposium on Biomedical Imaging , pp. 1015-1018
    • Liu, S.1    Liu, S.2    Cai, W.3
  • 53
    • 84885933775 scopus 로고    scopus 로고
    • Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
    • Prasoon A, Petersen K, Igel C, et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv 2013;16:246-53.
    • (2013) Med Image Comput Comput Assist Interv , vol.16 , pp. 246-253
    • Prasoon, A.1    Petersen, K.2    Igel, C.3
  • 54
    • 84921773752 scopus 로고    scopus 로고
    • Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation
    • Boston, MA, USA
    • Yoo Y, Brosch T, Traboulsee A, et al. Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation. In: International Workshop on Machine Learning in Medical Imaging, Boston, MA, USA, 2014, 117-24.
    • (2014) International Workshop on Machine Learning in Medical Imaging , pp. 117-124
    • Yoo, Y.1    Brosch, T.2    Traboulsee, A.3
  • 55
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng J-Z, Ni D, Chou Y-H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016;6:24454.
    • (2016) Sci Rep , vol.6 , pp. 24454
    • Cheng, J.-Z.1    Ni, D.2    Chou, Y.-H.3
  • 59
    • 84968813824 scopus 로고    scopus 로고
    • Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
    • Miotto R, Li L, Kidd BA, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016;6:26094.
    • (2016) Sci Rep , vol.6 , pp. 26094
    • Miotto, R.1    Li, L.2    Kidd, B.A.3
  • 60
    • 84962538633 scopus 로고    scopus 로고
    • Deep learning to predict patient future diseases from the electronic health records
    • Miotto R, Li L, Dudley JT. Deep learning to predict patient future diseases from the electronic health records. In European Conference in Information Retrieval, 2016, 768-74.
    • (2016) European Conference in Information Retrieval , pp. 768-774
    • Miotto, R.1    Li, L.2    Dudley, J.T.3
  • 62
    • 84927945601 scopus 로고    scopus 로고
    • Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM)
    • Tran T, Nguyen TD, Phung D, et al. Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J Biomed Inform 2015;54:96-105.
    • (2015) J Biomed Inform , vol.54 , pp. 96-105
    • Tran, T.1    Nguyen, T.D.2    Phung, D.3
  • 64
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One 2013;8:e66341.
    • (2013) PLoS One , vol.8
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 68
    • 85019722825 scopus 로고    scopus 로고
    • De-identification of patient notes with recurrent neural networks
    • Dernoncourt F, Lee JY, Uzuner O, et al. De-identification of patient notes with recurrent neural networks. J Am Med Inform Assoc 2016; doi: 10.1093/jamia/ocw156.
    • (2016) J Am Med Inform Assoc
    • Dernoncourt, F.1    Lee, J.Y.2    Uzuner, O.3
  • 69
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015;12:931-4.
    • (2015) Nat Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 70
    • 84976908652 scopus 로고    scopus 로고
    • Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 2016;26:990-9.
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 71
    • 84980006946 scopus 로고    scopus 로고
    • Accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller C, Lee H, Reik W, et al. Accurate prediction of single-cell DNA methylation states using deep learning. bioRxiv 2016. http://dx.doi.org/10.1101/055715.
    • (2016) bioRxiv
    • Angermueller, C.1    Lee, H.2    Reik, W.3
  • 74
    • 84927770389 scopus 로고    scopus 로고
    • Predicting backbone Ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
    • Lyons J, Dehzangi A, Heffernan R, et al. Predicting backbone Ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 2014;35:2040-6.
    • (2014) J Comput Chem , vol.35 , pp. 2040-2046
    • Lyons, J.1    Dehzangi, A.2    Heffernan, R.3
  • 79
    • 85017106185 scopus 로고    scopus 로고
    • Correction of: Sleep quality prediction from wearable data using deep learning
    • Sathyanarayana A, Joty S, Fernandez-Luque L, et al. Correction of: sleep quality prediction from wearable data using deep learning. JMIR Mhealth Uhealth 2016;4:e130.
    • (2016) JMIR Mhealth Uhealth , vol.4
    • Sathyanarayana, A.1    Joty, S.2    Fernandez-Luque, L.3
  • 80
    • 85009727770 scopus 로고    scopus 로고
    • Precision oncology for acute myeloid leukemia using a knowledge bank approach
    • Gerstung M, Papaemmanuil E, Martincorena I, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 2017;49:332-40.
    • (2017) Nat Genet , vol.49 , pp. 332-340
    • Gerstung, M.1    Papaemmanuil, E.2    Martincorena, I.3
  • 81
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-324.
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3
  • 82
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput 1989;1:270-80.
    • (1989) Neural Comput , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 84
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313:504-7.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 85
    • 0014266913 scopus 로고
    • Receptive fields and functional architecture of monkey striate cortex
    • Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J. Physiol 1968;195:215-43.
    • (1968) J. Physiol , vol.195 , pp. 215-243
    • Hubel, D.H.1    Wiesel, T.N.2
  • 89
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006;18:1527-54.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 90
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371-408.
    • (2010) J Mach Learn Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3
  • 93
    • 84968861400 scopus 로고    scopus 로고
    • Applications of deep learning in biomedicine
    • Mamoshina P, Vieira A, Putin E, et al. Applications of deep learning in biomedicine. Mol Pharm 2016;13:1445-54.
    • (2016) Mol Pharm , vol.13 , pp. 1445-1454
    • Mamoshina, P.1    Vieira, A.2    Putin, E.3
  • 95
    • 84938856283 scopus 로고    scopus 로고
    • Deep learning for regulatory genomics
    • Park Y, Kellis M. Deep learning for regulatory genomics. Nat Biotechnol 2015;33:825-6.
    • (2015) Nat Biotechnol , vol.33 , pp. 825-826
    • Park, Y.1    Kellis, M.2
  • 96
    • 84949818508 scopus 로고    scopus 로고
    • Machine learning in genomic medicine: A review of computational problems and data sets
    • Leung MKK, Delong A, Alipanahi B, et al. Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE 2016;104:176-97.
    • (2016) Proc IEEE , vol.104 , pp. 176-197
    • Leung, M.K.K.1    Delong, A.2    Alipanahi, B.3
  • 97
    • 84923276179 scopus 로고    scopus 로고
    • The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong HY, Alipanahi B, Lee LJ, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015;347:1254806.
    • (2015) Science , vol.347 , pp. 1254806
    • Xiong, H.Y.1    Alipanahi, B.2    Lee, L.J.3
  • 98
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure - Activity relationships
    • Ma J, Sheridan RP, Liaw A, et al. Deep neural nets as a method for quantitative structure - activity relationships. J Chem Inf Model 2015;55:263-74.
    • (2015) J Chem Inf Model , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3
  • 99
    • 85015886887 scopus 로고    scopus 로고
    • Translational bioinformatics in the era of real-time biomedical, healthcare and wellness data streams
    • Shameer K, Badgeley MA, Miotto R, et al. Translational bioinformatics in the era of real-time biomedical, healthcare and wellness data streams. Brief Bioinform 2017; 18:1105-124.
    • (2017) Brief Bioinform , vol.18 , pp. 1105-1124
    • Shameer, K.1    Badgeley, M.A.2    Miotto, R.3
  • 100
    • 84959469841 scopus 로고    scopus 로고
    • The rise of consumer health wearables: Promises and barriers
    • Piwek L, Ellis DA, Andrews S, et al. The rise of consumer health wearables: promises and barriers. PLoS Med 2016; 13:e1001953.
    • (2016) PLoS Med , vol.13
    • Piwek, L.1    Ellis, D.A.2    Andrews, S.3
  • 101
    • 85014926848 scopus 로고    scopus 로고
    • A deep learning approach to on-node sensor data analytics for mobile or wearable devices
    • Ravi D, Wong C, Lo B, et al. A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J Biomed Health Inform 2017;21:56-64.
    • (2017) IEEE J Biomed Health Inform , vol.21 , pp. 56-64
    • Ravi, D.1    Wong, C.2    Lo, B.3
  • 104
    • 85012202904 scopus 로고    scopus 로고
    • Monitoring potential drug interactions and reactions via network analysis of instagram user timelines
    • Correia RB, Li L, Rocha LM. Monitoring potential drug interactions and reactions via network analysis of instagram user timelines. Pac Symp Biocomput 2016;21:492-503.
    • (2016) Pac Symp Biocomput , vol.21 , pp. 492-503
    • Correia, R.B.1    Li, L.2    Rocha, L.M.3
  • 105
    • 84927943705 scopus 로고    scopus 로고
    • Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
    • Nikfarjam A, Sarker A, O'Connor K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015;22:671-81.
    • (2015) J Am Med Inform Assoc , vol.22 , pp. 671-681
    • Nikfarjam, A.1    Sarker, A.2    O'Connor, K.3
  • 106
    • 85019568044 scopus 로고    scopus 로고
    • Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy
    • New York, NY, USA
    • Gilad-Bachrach R, Dowlin N, Laine K, et al. CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, New York, NY, USA, 2016, 201-10.
    • (2016) International Conference on Machine Learning , pp. 201-210
    • Gilad-Bachrach, R.1    Dowlin, N.2    Laine, K.3
  • 108
    • 85029450982 scopus 로고    scopus 로고
    • Stealing machine learning models via prediction apis
    • Austin, TX, USA
    • Tramèr F, Zhang F, Juels A, et al. Stealing machine learning models via prediction apis. In: USENIX Security Symposium, Austin, TX, USA, 2016.
    • (2016) USENIX Security Symposium
    • Tramèr, F.1    Zhang, F.2    Juels, A.3
  • 112
    • 79955858775 scopus 로고    scopus 로고
    • Differentially private empirical risk minimization
    • Chaudhuri K, Monteleoni C, Sarwate A. Differentially private empirical risk minimization. J Mach Learn Res 2011;12:1069-109.
    • (2011) J Mach Learn Res , vol.12 , pp. 1069-1109
    • Chaudhuri, K.1    Monteleoni, C.2    Sarwate, A.3
  • 114
    • 85007268662 scopus 로고    scopus 로고
    • Differential privacy preservation for deep auto-encoders: An application of human behavior prediction
    • Phoenix, AZ
    • Phan N, Wang Y, Wu X, et al. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, 2016:1309-16.
    • (2016) Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence , pp. 1309-1316
    • Phan, N.1    Wang, Y.2    Wu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.