-
1
-
-
84941197175
-
-
12 November 2016, date last accessed
-
Precision Medicine Initiative (NIH). https://www.nih.gov/pre cision-medicine-initiative-cohort-program (12 November 2016, date last accessed).
-
Precision Medicine Initiative (NIH)
-
-
-
2
-
-
84978137128
-
Biomarker tests for molecularly targeted therapies - The key to unlocking precision medicine
-
Lyman GH, Moses HL. Biomarker tests for molecularly targeted therapies - the key to unlocking precision medicine. N Engl J Med 2016;375:4-6.
-
(2016)
N Engl J Med
, vol.375
, pp. 4-6
-
-
Lyman, G.H.1
Moses, H.L.2
-
3
-
-
84923762812
-
A new initiative on precision medicine
-
Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372:793-5.
-
(2015)
N Engl J Med
, vol.372
, pp. 793-795
-
-
Collins, F.S.1
Varmus, H.2
-
4
-
-
84899480100
-
DriskkB: A large-scale disease-disease risk relationship knowledge base constructed from biomedical text
-
Xu R, Li L, Wang Q. dRiskKB: a large-scale disease-disease risk relationship knowledge base constructed from biomedical text. BMC Bioinformatics 2014;15:105.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 105
-
-
Xu, R.1
Li, L.2
Wang, Q.3
-
5
-
-
84931089568
-
Phenome-driven disease genetics prediction toward drug discovery
-
Chen Y, Li L, Zhang G-Q, et al. Phenome-driven disease genetics prediction toward drug discovery. Bioinformatics 2015;31:i276-83.
-
(2015)
Bioinformatics
, vol.31
, pp. i276-i283
-
-
Chen, Y.1
Li, L.2
Zhang, G.-Q.3
-
6
-
-
84895516704
-
Similarity network fusion for aggregating data types on a genomic scale
-
Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014;11:333-7.
-
(2014)
Nat Methods
, vol.11
, pp. 333-337
-
-
Wang, B.1
Mezlini, A.M.2
Demir, F.3
-
7
-
-
84858329412
-
Data-driven prediction of drug effects and interactions
-
Tatonetti NP, Ye PP, Daneshjou R, et al. Data-driven prediction of drug effects and interactions. Sci Transl Med 2012;4:125ra31.
-
(2012)
Sci Transl Med
, vol.4
, pp. 125ra31
-
-
Tatonetti, N.P.1
Ye, P.P.2
Daneshjou, R.3
-
8
-
-
84940389461
-
Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials
-
Miotto R, Weng C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inform Assoc 2015;22:e141-50.
-
(2015)
J Am Med Inform Assoc
, vol.22
, pp. e141-e150
-
-
Miotto, R.1
Weng, C.2
-
9
-
-
84946040296
-
Identification of type 2 diabetes subgroups through topological analysis of patient similarity
-
Li L, Cheng W-Y, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Transl Med 2015;7:311ra174.
-
(2015)
Sci Transl Med
, vol.7
, pp. 311ra174
-
-
Li, L.1
Cheng, W.-Y.2
Glicksberg, B.S.3
-
10
-
-
84929510967
-
Machine learning applications in genetics and genomics
-
Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet 2015;16:321-32.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 321-332
-
-
Libbrecht, M.W.1
Noble, W.S.2
-
11
-
-
84964312486
-
Clinical risk prediction by exploring high-order feature correlations
-
Wang F, Zhang P, Wang X, et al. Clinical risk prediction by exploring high-order feature correlations. AMIA Annual Symposium 2014;2014:1170-9.
-
(2014)
AMIA Annual Symposium
, vol.2014
, pp. 1170-1179
-
-
Wang, F.1
Zhang, P.2
Wang, X.3
-
12
-
-
37249089420
-
Predictive data mining in clinical medicine: Current issues and guidelines
-
Bellazzi R, Zupan B. Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inform 2008;77:81-97.
-
(2008)
Int J Med Inform
, vol.77
, pp. 81-97
-
-
Bellazzi, R.1
Zupan, B.2
-
13
-
-
84871854103
-
Next-generation phenotyping of electronic health records
-
Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc 2013;20:117-21.
-
(2013)
J Am Med Inform Assoc
, vol.20
, pp. 117-121
-
-
Hripcsak, G.1
Albers, D.J.2
-
14
-
-
84861235431
-
Mining electronic health records: Towards better research applications and clinical care
-
Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012;13:395-405.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 395-405
-
-
Jensen, P.B.1
Jensen, L.J.2
Brunak, S.3
-
15
-
-
84991833935
-
Big data application in biomedical research and health care: A literature review
-
Luo J, Wu M, Gopukumar D, et al. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights 2016;8:1-10.
-
(2016)
Biomed Inform Insights
, vol.8
, pp. 1-10
-
-
Luo, J.1
Wu, M.2
Gopukumar, D.3
-
16
-
-
84924415604
-
-
15 August 2016, date last accessed
-
SNOMED CT. https://www.nlm.nih.gov/healthit/snomedct/index.html (15 August 2016, date last accessed).
-
SNOMED CT
-
-
-
17
-
-
0004348431
-
-
15 August 2016, date last accessed
-
Unified Medical Language System (UMLS). https://www.nlm.nih.gov/research/umls/ (15 August 2016, date last accessed).
-
Unified Medical Language System (UMLS)
-
-
-
18
-
-
84870497957
-
-
15 October 2016, date last accessed
-
ICD-9 Code. https://www.cms.gov/medicare-coverage-database/staticpages/icd-9-code-lookup.aspx (15 October 2016, date last accessed).
-
ICD-9 Code
-
-
-
19
-
-
84856049655
-
Detection of conflicts and inconsistencies in taxonomy-based authorization policies
-
Atlanta, GA, USA
-
Mohan A, Blough DM, Kurc T, et al. Detection of conflicts and inconsistencies in taxonomy-based authorization policies. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine, Atlanta, GA, USA, 2011, 590-4.
-
(2011)
2011 IEEE International Conference on Bioinformatics and Biomedicine
, pp. 590-594
-
-
Mohan, A.1
Blough, D.M.2
Kurc, T.3
-
20
-
-
84883142799
-
A method for inferring medical diagnoses from patient similarities
-
Gottlieb A, Stein GY, Ruppin E, et al. A method for inferring medical diagnoses from patient similarities. BMC Med 2013;11:194.
-
(2013)
BMC Med
, vol.11
, pp. 194
-
-
Gottlieb, A.1
Stein, G.Y.2
Ruppin, E.3
-
22
-
-
85018965000
-
A predictive model for medical events based on contextual embedding of temporal sequences
-
Farhan W, Wang Z, Huang Y, et al. A predictive model for medical events based on contextual embedding of temporal sequences. J Med Internet Res 2016;4:e39.
-
(2016)
J Med Internet Res
, vol.4
-
-
Farhan, W.1
Wang, Z.2
Huang, Y.3
-
25
-
-
84876672166
-
Machine learning paradigms for speech recognition: An overview
-
Deng L, Li X. Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio Speech Lang Process 2013;21:1060-89.
-
(2013)
IEEE Trans Audio Speech Lang Process
, vol.21
, pp. 1060-1089
-
-
Deng, L.1
Li, X.2
-
28
-
-
85062471254
-
-
4 August 2016, date last accessed
-
Google's DeepMind forms health unit to build medical software. https://www.bloomberg.com/news/articles/2016-0224/google-s-deepmind-forms-health-unit-to-build-medi cal-software (4 August 2016, date last accessed).
-
Google's DeepMind Forms Health Unit to Build Medical Software
-
-
-
31
-
-
0004135065
-
Practical recommendations for gradient-based training of deep architectures
-
Bengio Y. Practical recommendations for gradient-based training of deep architectures. Neural Netw 2012;2;437-78.
-
(2012)
Neural Netw
, vol.2
, pp. 437-478
-
-
Bengio, Y.1
-
32
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015;61:85-117.
-
(2015)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
35
-
-
84937801713
-
Machine learning: Trends, perspectives, and prospects
-
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015; 349:255-60.
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
36
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-6.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
37
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio Y. Learning deep architectures for AI. Found Trends Mach Learn 2009;2:1-127.
-
(2009)
Found Trends Mach Learn
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
38
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan D, Bengio Y, Courville A, et al. Why does unsupervised pre-training help deep learning? J Mach Learn Res 2010;11:625-60.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
-
39
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton GE, Krizhevsky A. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929-58.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
-
41
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Orlando, FL, USA
-
Jia Y, Shelhamer E, Donahue J, et al. Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia, Orlando, FL, USA, 2014, 675-8.
-
(2014)
ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
-
45
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag 2012;29:82-97.
-
(2012)
IEEE Signal Process Mag
, vol.29
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
-
46
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. J Mach Learn Res 2011;12:2493-537.
-
(2011)
J Mach Learn Res
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
-
48
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-10.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
49
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-18.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
50
-
-
84938888109
-
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
-
Alipanahi B, Delong A, Weirauch MT, et al. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015;33:831-8.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
-
51
-
-
84920873973
-
Early diagnosis of Alzheimer's disease with deep learning
-
Beijing, China
-
Liu S, Liu S, Cai W, et al. Early diagnosis of Alzheimer's disease with deep learning. In: International Symposium on Biomedical Imaging, Beijing, China 2014, 1015-18.
-
(2014)
International Symposium on Biomedical Imaging
, pp. 1015-1018
-
-
Liu, S.1
Liu, S.2
Cai, W.3
-
53
-
-
84885933775
-
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
-
Prasoon A, Petersen K, Igel C, et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv 2013;16:246-53.
-
(2013)
Med Image Comput Comput Assist Interv
, vol.16
, pp. 246-253
-
-
Prasoon, A.1
Petersen, K.2
Igel, C.3
-
54
-
-
84921773752
-
Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation
-
Boston, MA, USA
-
Yoo Y, Brosch T, Traboulsee A, et al. Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation. In: International Workshop on Machine Learning in Medical Imaging, Boston, MA, USA, 2014, 117-24.
-
(2014)
International Workshop on Machine Learning in Medical Imaging
, pp. 117-124
-
-
Yoo, Y.1
Brosch, T.2
Traboulsee, A.3
-
55
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
-
Cheng J-Z, Ni D, Chou Y-H, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016;6:24454.
-
(2016)
Sci Rep
, vol.6
, pp. 24454
-
-
Cheng, J.-Z.1
Ni, D.2
Chou, Y.-H.3
-
56
-
-
85062468918
-
Risk prediction with electronic health records: A deep learning approach
-
Sydney, NSW, Australia
-
Liu C, Wang F, Hu J, et al. Risk prediction with electronic health records: a deep learning approach. In: ACM International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 2015, 705-14.
-
(2015)
ACM International Conference on Knowledge Discovery and Data Mining
, pp. 705-714
-
-
Liu, C.1
Wang, F.2
Hu, J.3
-
57
-
-
84980051800
-
Learning to diagnose with LSTM recurrent neural networks
-
San Diego, CA, USA
-
Lipton ZC, Kale DC, Elkan C, et al. Learning to diagnose with LSTM recurrent neural networks. In: International Conference on Learning Representations, San Diego, CA, USA, 2015, 1-18.
-
(2015)
International Conference on Learning Representations
, pp. 1-18
-
-
Lipton, Z.C.1
Kale, D.C.2
Elkan, C.3
-
59
-
-
84968813824
-
Deep patient: An unsupervised representation to predict the future of patients from the electronic health records
-
Miotto R, Li L, Kidd BA, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 2016;6:26094.
-
(2016)
Sci Rep
, vol.6
, pp. 26094
-
-
Miotto, R.1
Li, L.2
Kidd, B.A.3
-
62
-
-
84927945601
-
Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM)
-
Tran T, Nguyen TD, Phung D, et al. Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J Biomed Inform 2015;54:96-105.
-
(2015)
J Biomed Inform
, vol.54
, pp. 96-105
-
-
Tran, T.1
Nguyen, T.D.2
Phung, D.3
-
63
-
-
84954158331
-
Deep computational phenotyping
-
Sydney, NSW, Australia
-
Che Z, Kale D, Li W, et al. Deep computational phenotyping. In ACM International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 2015, 507-16.
-
(2015)
ACM International Conference on Knowledge Discovery and Data Mining
, pp. 507-516
-
-
Che, Z.1
Kale, D.2
Li, W.3
-
64
-
-
84879468407
-
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
-
Lasko TA, Denny JC, Levy MA. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS One 2013;8:e66341.
-
(2013)
PLoS One
, vol.8
-
-
Lasko, T.A.1
Denny, J.C.2
Levy, M.A.3
-
67
-
-
85029127032
-
Multi-task prediction of disease onsets from longitudinal laboratory tests
-
Los Angeles, CA, USA
-
Razavian N, Marcus J, Sontag D. Multi-task prediction of disease onsets from longitudinal laboratory tests. In Proceedings of the 1st Machine Learning for Healthcare Conference, Los Angeles, CA, USA, 2016, 73-100.
-
(2016)
Proceedings of the 1st Machine Learning for Healthcare Conference
, pp. 73-100
-
-
Razavian, N.1
Marcus, J.2
Sontag, D.3
-
68
-
-
85019722825
-
De-identification of patient notes with recurrent neural networks
-
Dernoncourt F, Lee JY, Uzuner O, et al. De-identification of patient notes with recurrent neural networks. J Am Med Inform Assoc 2016; doi: 10.1093/jamia/ocw156.
-
(2016)
J Am Med Inform Assoc
-
-
Dernoncourt, F.1
Lee, J.Y.2
Uzuner, O.3
-
69
-
-
84958257565
-
Predicting effects of noncoding variants with deep learning-based sequence model
-
Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015;12:931-4.
-
(2015)
Nat Methods
, vol.12
, pp. 931-934
-
-
Zhou, J.1
Troyanskaya, O.G.2
-
70
-
-
84976908652
-
Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks
-
Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 2016;26:990-9.
-
(2016)
Genome Res
, vol.26
, pp. 990-999
-
-
Kelley, D.R.1
Snoek, J.2
Rinn, J.L.3
-
71
-
-
84980006946
-
Accurate prediction of single-cell DNA methylation states using deep learning
-
Angermueller C, Lee H, Reik W, et al. Accurate prediction of single-cell DNA methylation states using deep learning. bioRxiv 2016. http://dx.doi.org/10.1101/055715.
-
(2016)
bioRxiv
-
-
Angermueller, C.1
Lee, H.2
Reik, W.3
-
73
-
-
84925878230
-
Using deep learning to enhance cancer diagnosis and classification
-
Atlanta, GA, USA
-
Fakoor R, Ladhak F, Nazi A, et al. Using deep learning to enhance cancer diagnosis and classification. In: International Conference on Machine Learning, Atlanta, GA, USA, 2013.
-
(2013)
International Conference on Machine Learning
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
-
74
-
-
84927770389
-
Predicting backbone Ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
-
Lyons J, Dehzangi A, Heffernan R, et al. Predicting backbone Ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J Comput Chem 2014;35:2040-6.
-
(2014)
J Comput Chem
, vol.35
, pp. 2040-2046
-
-
Lyons, J.1
Dehzangi, A.2
Heffernan, R.3
-
76
-
-
84966473909
-
Using deep learning for energy expenditure estimation with wearable sensors
-
Cambridge, MA, USA
-
Zhu J, Pande A, Mohapatra P, et al. Using deep learning for energy expenditure estimation with wearable sensors. In: 17th International Conference on E-health Networking, Application Services (HealthCom), Cambridge, MA, USA, 2015, 501-6.
-
(2015)
17th International Conference on E-Health Networking, Application Services (HealthCom)
, pp. 501-506
-
-
Zhu, J.1
Pande, A.2
Mohapatra, P.3
-
77
-
-
85009084399
-
An adaptive deep learning approach for PPG-based identification
-
Orlando, FL, USA
-
Jindal V, Birjandtalab J, Pouyan MB, et al. An adaptive deep learning approach for PPG-based identification. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 2016, 6401-4.
-
(2016)
38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
, pp. 6401-6404
-
-
Jindal, V.1
Birjandtalab, J.2
Pouyan, M.B.3
-
79
-
-
85017106185
-
Correction of: Sleep quality prediction from wearable data using deep learning
-
Sathyanarayana A, Joty S, Fernandez-Luque L, et al. Correction of: sleep quality prediction from wearable data using deep learning. JMIR Mhealth Uhealth 2016;4:e130.
-
(2016)
JMIR Mhealth Uhealth
, vol.4
-
-
Sathyanarayana, A.1
Joty, S.2
Fernandez-Luque, L.3
-
80
-
-
85009727770
-
Precision oncology for acute myeloid leukemia using a knowledge bank approach
-
Gerstung M, Papaemmanuil E, Martincorena I, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 2017;49:332-40.
-
(2017)
Nat Genet
, vol.49
, pp. 332-340
-
-
Gerstung, M.1
Papaemmanuil, E.2
Martincorena, I.3
-
81
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-324.
-
(1998)
Proc IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
-
82
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams RJ, Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput 1989;1:270-80.
-
(1989)
Neural Comput
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
84
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313:504-7.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
85
-
-
0014266913
-
Receptive fields and functional architecture of monkey striate cortex
-
Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J. Physiol 1968;195:215-43.
-
(1968)
J. Physiol
, vol.195
, pp. 215-243
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
89
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput 2006;18:1527-54.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
90
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371-408.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
-
93
-
-
84968861400
-
Applications of deep learning in biomedicine
-
Mamoshina P, Vieira A, Putin E, et al. Applications of deep learning in biomedicine. Mol Pharm 2016;13:1445-54.
-
(2016)
Mol Pharm
, vol.13
, pp. 1445-1454
-
-
Mamoshina, P.1
Vieira, A.2
Putin, E.3
-
95
-
-
84938856283
-
Deep learning for regulatory genomics
-
Park Y, Kellis M. Deep learning for regulatory genomics. Nat Biotechnol 2015;33:825-6.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 825-826
-
-
Park, Y.1
Kellis, M.2
-
96
-
-
84949818508
-
Machine learning in genomic medicine: A review of computational problems and data sets
-
Leung MKK, Delong A, Alipanahi B, et al. Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE 2016;104:176-97.
-
(2016)
Proc IEEE
, vol.104
, pp. 176-197
-
-
Leung, M.K.K.1
Delong, A.2
Alipanahi, B.3
-
97
-
-
84923276179
-
The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong HY, Alipanahi B, Lee LJ, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015;347:1254806.
-
(2015)
Science
, vol.347
, pp. 1254806
-
-
Xiong, H.Y.1
Alipanahi, B.2
Lee, L.J.3
-
98
-
-
84923367417
-
Deep neural nets as a method for quantitative structure - Activity relationships
-
Ma J, Sheridan RP, Liaw A, et al. Deep neural nets as a method for quantitative structure - activity relationships. J Chem Inf Model 2015;55:263-74.
-
(2015)
J Chem Inf Model
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
-
99
-
-
85015886887
-
Translational bioinformatics in the era of real-time biomedical, healthcare and wellness data streams
-
Shameer K, Badgeley MA, Miotto R, et al. Translational bioinformatics in the era of real-time biomedical, healthcare and wellness data streams. Brief Bioinform 2017; 18:1105-124.
-
(2017)
Brief Bioinform
, vol.18
, pp. 1105-1124
-
-
Shameer, K.1
Badgeley, M.A.2
Miotto, R.3
-
100
-
-
84959469841
-
The rise of consumer health wearables: Promises and barriers
-
Piwek L, Ellis DA, Andrews S, et al. The rise of consumer health wearables: promises and barriers. PLoS Med 2016; 13:e1001953.
-
(2016)
PLoS Med
, vol.13
-
-
Piwek, L.1
Ellis, D.A.2
Andrews, S.3
-
101
-
-
85014926848
-
A deep learning approach to on-node sensor data analytics for mobile or wearable devices
-
Ravi D, Wong C, Lo B, et al. A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J Biomed Health Inform 2017;21:56-64.
-
(2017)
IEEE J Biomed Health Inform
, vol.21
, pp. 56-64
-
-
Ravi, D.1
Wong, C.2
Lo, B.3
-
102
-
-
84942430054
-
Can deep learning revolutionize mobile sensing?
-
Santa Fe, NM, USA
-
Lane ND, Georgiev P. Can deep learning revolutionize mobile sensing? In International Workshop on Mobile Computing Systems and Applications, Santa Fe, NM, USA, 2015, 117-22.
-
(2015)
International Workshop on Mobile Computing Systems and Applications
, pp. 117-122
-
-
Lane, N.D.1
Georgiev, P.2
-
104
-
-
85012202904
-
Monitoring potential drug interactions and reactions via network analysis of instagram user timelines
-
Correia RB, Li L, Rocha LM. Monitoring potential drug interactions and reactions via network analysis of instagram user timelines. Pac Symp Biocomput 2016;21:492-503.
-
(2016)
Pac Symp Biocomput
, vol.21
, pp. 492-503
-
-
Correia, R.B.1
Li, L.2
Rocha, L.M.3
-
105
-
-
84927943705
-
Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
-
Nikfarjam A, Sarker A, O'Connor K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc 2015;22:671-81.
-
(2015)
J Am Med Inform Assoc
, vol.22
, pp. 671-681
-
-
Nikfarjam, A.1
Sarker, A.2
O'Connor, K.3
-
106
-
-
85019568044
-
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy
-
New York, NY, USA
-
Gilad-Bachrach R, Dowlin N, Laine K, et al. CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, New York, NY, USA, 2016, 201-10.
-
(2016)
International Conference on Machine Learning
, pp. 201-210
-
-
Gilad-Bachrach, R.1
Dowlin, N.2
Laine, K.3
-
108
-
-
85029450982
-
Stealing machine learning models via prediction apis
-
Austin, TX, USA
-
Tramèr F, Zhang F, Juels A, et al. Stealing machine learning models via prediction apis. In: USENIX Security Symposium, Austin, TX, USA, 2016.
-
(2016)
USENIX Security Symposium
-
-
Tramèr, F.1
Zhang, F.2
Juels, A.3
-
114
-
-
85007268662
-
Differential privacy preservation for deep auto-encoders: An application of human behavior prediction
-
Phoenix, AZ
-
Phan N, Wang Y, Wu X, et al. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, 2016:1309-16.
-
(2016)
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
, pp. 1309-1316
-
-
Phan, N.1
Wang, Y.2
Wu, X.3
-
115
-
-
84954108845
-
Privacy-preserving deep learning
-
Denver, CO, USA
-
Shokri R, Shmatikov V. Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 2015, 1310-21.
-
(2015)
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security
, pp. 1310-1321
-
-
Shokri, R.1
Shmatikov, V.2
-
118
-
-
84984985889
-
Why should I trust you? Explaining the predictions of any classifier
-
San Francisco, CA, USA
-
Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: ACM Conferences on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016, 1135-44.
-
(2016)
ACM Conferences on Knowledge Discovery and Data Mining
, pp. 1135-1144
-
-
Ribeiro, M.T.1
Singh, S.2
Guestrin, C.3
|