메뉴 건너뛰기




Volumn 77, Issue 2, 2008, Pages 81-97

Predictive data mining in clinical medicine: Current issues and guidelines

Author keywords

Clinical medicine; Data analysis; Data mining; Data mining process; Predictive models

Indexed keywords

COMPUTATIONAL METHODS; DATA REDUCTION; MEDICINE; PROBLEM SOLVING;

EID: 37249089420     PISSN: 13865056     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijmedinf.2006.11.006     Document Type: Review
Times cited : (644)

References (108)
  • 2
    • 0030289446 scopus 로고    scopus 로고
    • Data mining and knowledge discovery in databases
    • Fayyad U., Piatetsky-Shapiro G., and Smyth P. Data mining and knowledge discovery in databases. Commun. ACM 39 (1996) 24-26
    • (1996) Commun. ACM , vol.39 , pp. 24-26
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 3
    • 0035066569 scopus 로고    scopus 로고
    • Predicting patient's long-term clinical status after hip arthroplasty using hierarchical decision modelling and data mining
    • Zupan B., Demsar J., Smrke D., Bozikov K., Stankovski V., Bratko I., and Beck J.R. Predicting patient's long-term clinical status after hip arthroplasty using hierarchical decision modelling and data mining. Meth. Inf. Med. 40 (2001) 25-31
    • (2001) Meth. Inf. Med. , vol.40 , pp. 25-31
    • Zupan, B.1    Demsar, J.2    Smrke, D.3    Bozikov, K.4    Stankovski, V.5    Bratko, I.6    Beck, J.R.7
  • 4
    • 32344434216 scopus 로고    scopus 로고
    • Orange: from experimental machine learning to interactive data mining
    • Springer Verlag, Pisa, Italy 537-539
    • Demsar J., Zupan B., Leban G., and Curk T. Orange: from experimental machine learning to interactive data mining. European Conference of Machine Learning (2004), Springer Verlag, Pisa, Italy 537-539
    • (2004) European Conference of Machine Learning
    • Demsar, J.1    Zupan, B.2    Leban, G.3    Curk, T.4
  • 5
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • Kononenko I. Inductive and Bayesian learning in medical diagnosis. Appl. Artif. Intelligen. 7 (1993) 317-337
    • (1993) Appl. Artif. Intelligen. , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 6
    • 0018179241 scopus 로고
    • A practical device for the application of a diagnostic or prognostic function
    • Lubsen J., Pool J., and van der Does E. A practical device for the application of a diagnostic or prognostic function. Meth. Inf. Med. 17 (1978) 127-129
    • (1978) Meth. Inf. Med. , vol.17 , pp. 127-129
    • Lubsen, J.1    Pool, J.2    van der Does, E.3
  • 9
    • 0032550753 scopus 로고    scopus 로고
    • A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer
    • Kattan M.W., Eastham J.A., Stapleton A.M., Wheeler T.M., and Scardino P.T. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J. Natl. Cancer Inst. 90 (1998) 766-771
    • (1998) J. Natl. Cancer Inst. , vol.90 , pp. 766-771
    • Kattan, M.W.1    Eastham, J.A.2    Stapleton, A.M.3    Wheeler, T.M.4    Scardino, P.T.5
  • 13
    • 34249966007 scopus 로고
    • The CN2 Induction Algorithm
    • Clark P., and Niblett T. The CN2 Induction Algorithm. Mach. Learn. 3 (1989) 261-283
    • (1989) Mach. Learn. , vol.3 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 14
    • 84867754892 scopus 로고    scopus 로고
    • Learning patterns in noisy data: the AQ approach
    • Paliouras G., Karkaletsis V., and Spyropoulos C. (Eds), Springer-Verlag, Berlin
    • Michalski R.S., and Kaufman K. Learning patterns in noisy data: the AQ approach. In: Paliouras G., Karkaletsis V., and Spyropoulos C. (Eds). Machine Learning and its Applications (2001), Springer-Verlag, Berlin 22-38
    • (2001) Machine Learning and its Applications , pp. 22-38
    • Michalski, R.S.1    Kaufman, K.2
  • 15
    • 0032255089 scopus 로고    scopus 로고
    • Intelligent data analysis for medical diagnosis: using machine learning and temporal abstraction
    • Lavrac N., Kononenko I., Keravnou E., Kukar M., and Zupan B. Intelligent data analysis for medical diagnosis: using machine learning and temporal abstraction. AI Commun. 11 (1998) 191-218
    • (1998) AI Commun. , vol.11 , pp. 191-218
    • Lavrac, N.1    Kononenko, I.2    Keravnou, E.3    Kukar, M.4    Zupan, B.5
  • 18
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G., Vach W., and Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat. Med. 19 (2000) 541-561
    • (2000) Stat. Med. , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 21
    • 34249753618 scopus 로고
    • Support-vectors networks
    • Cortes C., and Vapnik V. Support-vectors networks. Mach. Learn. 20 (1995) 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 22
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23 (2001) 89-109
    • (2001) Artif. Intell. Med. , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 23
    • 0025895530 scopus 로고
    • Medical expert systems based on causal probabilistic networks
    • Andreassen S., Jensen F.V., and Olesen K.G. Medical expert systems based on causal probabilistic networks. Int. J. Biomed. Comput. 28 (1991) 1-30
    • (1991) Int. J. Biomed. Comput. , vol.28 , pp. 1-30
    • Andreassen, S.1    Jensen, F.V.2    Olesen, K.G.3
  • 25
    • 0036268214 scopus 로고    scopus 로고
    • NasoNet, modeling the spread of nasopharyngeal cancer with networks of probabilistic events in discrete time
    • Galan S.F., Aguado F., Diez F.J., and Mira J. NasoNet, modeling the spread of nasopharyngeal cancer with networks of probabilistic events in discrete time. Artif. Intell. Med. 25 (2002) 247-264
    • (2002) Artif. Intell. Med. , vol.25 , pp. 247-264
    • Galan, S.F.1    Aguado, F.2    Diez, F.J.3    Mira, J.4
  • 26
    • 0142197164 scopus 로고    scopus 로고
    • The role of Bayesian Networks in the diagnosis of pulmonary embolism
    • Luciani D., Marchesi M., and Bertolini G. The role of Bayesian Networks in the diagnosis of pulmonary embolism. J. Thromb. Haemost. 1 (2003) 698-707
    • (2003) J. Thromb. Haemost. , vol.1 , pp. 698-707
    • Luciani, D.1    Marchesi, M.2    Bertolini, G.3
  • 27
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter D.J., and Lauritzen S.L. Sequential updating of conditional probabilities on directed graphical structures. Networks 20 (1990) 579-605
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 28
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Buntine W.L. A guide to the literature on learning probabilistic networks from data. IEEE Trans. Know. Data Eng. 8 (1996) 195-210
    • (1996) IEEE Trans. Know. Data Eng. , vol.8 , pp. 195-210
    • Buntine, W.L.1
  • 29
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9 (1992) 309-347
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 30
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni M., and Sebastiani P. Robust learning with missing data. Mach. Learn. 45 (2001) 147-170
    • (2001) Mach. Learn. , vol.45 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 31
    • 0042925736 scopus 로고    scopus 로고
    • Application of a data-mining method based on Bayesian networks to lesion-deficit analysis
    • Herskovits E.H., and Gerring J.P. Application of a data-mining method based on Bayesian networks to lesion-deficit analysis. Neuroimage 19 (2003) 1664-1673
    • (2003) Neuroimage , vol.19 , pp. 1664-1673
    • Herskovits, E.H.1    Gerring, J.P.2
  • 32
    • 16844366938 scopus 로고    scopus 로고
    • Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia
    • Sebastiani P., Ramoni M.F., Nolan V., Baldwin C.T., and Steinberg M.H. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat. Genet. 37 (2005) 435-440
    • (2005) Nat. Genet. , vol.37 , pp. 435-440
    • Sebastiani, P.1    Ramoni, M.F.2    Nolan, V.3    Baldwin, C.T.4    Steinberg, M.H.5
  • 34
    • 84929843809 scopus 로고    scopus 로고
    • P J M. Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma
    • Keravnou E., Garbay C., Baud R., and Wyatt C.J. (Eds), Grenoble, France
    • Larrañaga P., Sierra B., Gallego M.Y., and Michelena M.J. P J M. Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma. In: Keravnou E., Garbay C., Baud R., and Wyatt C.J. (Eds). Artificial Intelligence in Medicine Europe (1997), Grenoble, France 261-272
    • (1997) Artificial Intelligence in Medicine Europe , pp. 261-272
    • Larrañaga, P.1    Sierra, B.2    Gallego, M.Y.3    Michelena, M.J.4
  • 35
    • 10044240790 scopus 로고    scopus 로고
    • Using prior knowledge to improve genetic network reconstruction from microarray data
    • Le Phillip P., Bahl A., and Ungar L.H. Using prior knowledge to improve genetic network reconstruction from microarray data. In. Silico. Biol. 4 (2004) 335-353
    • (2004) In. Silico. Biol. , vol.4 , pp. 335-353
    • Le Phillip, P.1    Bahl, A.2    Ungar, L.H.3
  • 37
    • 0011302023 scopus 로고    scopus 로고
    • Anatomic pathology data mining
    • Cios K.J. (Ed), Springer-Verlag, Berlin/Heidelberg
    • Moore G.W., and Berman J.J. Anatomic pathology data mining. In: Cios K.J. (Ed). Medical Data Mining and Knowledge Discovery (2001), Springer-Verlag, Berlin/Heidelberg 61-108
    • (2001) Medical Data Mining and Knowledge Discovery , pp. 61-108
    • Moore, G.W.1    Berman, J.J.2
  • 38
    • 77952768838 scopus 로고    scopus 로고
    • Supporting discovery in medicine by association rule mining in Medline and UMLS
    • Hristovski D., Stare J., Peterlin B., and Dzeroski S. Supporting discovery in medicine by association rule mining in Medline and UMLS. Medinfo 10 (2001) 1344-1348
    • (2001) Medinfo , vol.10 , pp. 1344-1348
    • Hristovski, D.1    Stare, J.2    Peterlin, B.3    Dzeroski, S.4
  • 39
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
    • Aronson A.R. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. Proc. AMIA Symp. (2001) 17-21
    • (2001) Proc. AMIA Symp. , pp. 17-21
    • Aronson, A.R.1
  • 40
    • 0032367976 scopus 로고    scopus 로고
    • Data mining: statistics and more?
    • Hand D.J. Data mining: statistics and more?. Am. Statist. 52 (1998) 112-118
    • (1998) Am. Statist. , vol.52 , pp. 112-118
    • Hand, D.J.1
  • 45
    • 19544394460 scopus 로고    scopus 로고
    • Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
    • Yu J.S., Ongarello S., Fiedler R., Chen X.W., Toffolo G., Cobelli C., and Trajanoski Z. Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21 (2005) 2200-2209
    • (2005) Bioinformatics , vol.21 , pp. 2200-2209
    • Yu, J.S.1    Ongarello, S.2    Fiedler, R.3    Chen, X.W.4    Toffolo, G.5    Cobelli, C.6    Trajanoski, Z.7
  • 47
    • 33646260685 scopus 로고    scopus 로고
    • Using molecular information to guide brain tumor therapy
    • Mischel P.S., and Cloughesy T. Using molecular information to guide brain tumor therapy. Nat. Clin. Pract. Neurol. 2 (2006) 232-233
    • (2006) Nat. Clin. Pract. Neurol. , vol.2 , pp. 232-233
    • Mischel, P.S.1    Cloughesy, T.2
  • 48
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6    Coller, H.7    Loh, M.L.8
  • 51
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp M.A., Ross K.N., Tamayo P., Weng A.P., Kutok J.L., Aguiar R.C., Gaasenbeek M., Angelo M., et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med. 8 (2002) 68-74
    • (2002) Nat. Med. , vol.8 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3    Weng, A.P.4    Kutok, J.L.5    Aguiar, R.C.6    Gaasenbeek, M.7    Angelo, M.8
  • 52
    • 0141994853 scopus 로고    scopus 로고
    • Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction
    • 12 Spec No 2:
    • Nevins J.R., Huang E.S., Dressman H., Pittman J., Huang A.T., and West M. Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum. Mol. Genet. (2003) R153-R157 12 Spec No 2:
    • (2003) Hum. Mol. Genet.
    • Nevins, J.R.1    Huang, E.S.2    Dressman, H.3    Pittman, J.4    Huang, A.T.5    West, M.6
  • 55
    • 28344454000 scopus 로고    scopus 로고
    • Molecular classification and molecular forecasting of breast cancer: ready for clinical application?
    • Brenton J.D., Carey L.A., Ahmed A.A., and Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J. Clin. Oncol. 23 (2005) 7350-7360
    • (2005) J. Clin. Oncol. , vol.23 , pp. 7350-7360
    • Brenton, J.D.1    Carey, L.A.2    Ahmed, A.A.3    Caldas, C.4
  • 56
    • 33646856024 scopus 로고    scopus 로고
    • Avoiding model selection bias in small-sample genomic datasets
    • Berrar D., Bradbury I., and Dubitzky W. Avoiding model selection bias in small-sample genomic datasets. Bioinformatics 22 (2006) 1245-1250
    • (2006) Bioinformatics , vol.22 , pp. 1245-1250
    • Berrar, D.1    Bradbury, I.2    Dubitzky, W.3
  • 57
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • Simon R., Radmacher M.D., Dobbin K., and McShane L.M. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J. Natl. Cancer Inst. 95 (2003) 14-18
    • (2003) J. Natl. Cancer Inst. , vol.95 , pp. 14-18
    • Simon, R.1    Radmacher, M.D.2    Dobbin, K.3    McShane, L.M.4
  • 58
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • Ein-Dor L., Zuk O., and Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 5923-5928
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 60
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • Adam B.L., Qu Y., Davis J.W., Ward M.D., Clements M.A., Cazares L.H., Semmes O.J., Schellhammer P.F., et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 62 (2002) 3609-3614
    • (2002) Cancer Res. , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3    Ward, M.D.4    Clements, M.A.5    Cazares, L.H.6    Semmes, O.J.7    Schellhammer, P.F.8
  • 62
    • 34748889490 scopus 로고    scopus 로고
    • A new approach for the analysis of mass spectrometry data for biomarker discovery
    • Barbarini N., Magni P., and Bellazzi R. A new approach for the analysis of mass spectrometry data for biomarker discovery. AMIA Annu Symp. Proc. (2006) 26-30
    • (2006) AMIA Annu Symp. Proc. , pp. 26-30
    • Barbarini, N.1    Magni, P.2    Bellazzi, R.3
  • 63
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions
    • Somorjai R.L., Dolenko B., and Baumgartner R. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 19 (2003) 1484-1491
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 66
    • 33744937046 scopus 로고    scopus 로고
    • Machine learning for detecting gene-gene interactions: a review
    • McKinney B.A., Reif D.M., Ritchie M.D., and Moore J.H. Machine learning for detecting gene-gene interactions: a review. Appl. Bioinform. 5 (2006) 77-88
    • (2006) Appl. Bioinform. , vol.5 , pp. 77-88
    • McKinney, B.A.1    Reif, D.M.2    Ritchie, M.D.3    Moore, J.H.4
  • 67
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • Moore J.H., Gilbert J.C., Tsai C.T., Chiang F.T., Holden T., Barney N., and White B.C. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241 (2006) 252-261
    • (2006) J. Theor. Biol. , vol.241 , pp. 252-261
    • Moore, J.H.1    Gilbert, J.C.2    Tsai, C.T.3    Chiang, F.T.4    Holden, T.5    Barney, N.6    White, B.C.7
  • 68
    • 37249066631 scopus 로고
    • Prognostic models: clinically useful or quickly forgotten?
    • Wyatt C.J., and Altman D.G. Prognostic models: clinically useful or quickly forgotten?. BMJ (1995) 311
    • (1995) BMJ , pp. 311
    • Wyatt, C.J.1    Altman, D.G.2
  • 69
    • 0034287457 scopus 로고    scopus 로고
    • Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer
    • Kattan M.W., Zelefsky M.J., Kupelian P.A., Scardino P.T., Fuks Z., and Leibel S.A. Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J. Clin. Oncol. 18 (2000) 3352-3359
    • (2000) J. Clin. Oncol. , vol.18 , pp. 3352-3359
    • Kattan, M.W.1    Zelefsky, M.J.2    Kupelian, P.A.3    Scardino, P.T.4    Fuks, Z.5    Leibel, S.A.6
  • 70
    • 84886614002 scopus 로고
    • Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system
    • Shortliffe E.H., Davis R., Axline S.G., Buchanan B.G., Green C.C., and Cohen S.N. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput. Biomed. Res. 8 (1975) 303-320
    • (1975) Comput. Biomed. Res. , vol.8 , pp. 303-320
    • Shortliffe, E.H.1    Davis, R.2    Axline, S.G.3    Buchanan, B.G.4    Green, C.C.5    Cohen, S.N.6
  • 71
    • 0020001973 scopus 로고
    • Internist-1, an experimental computer-based diagnostic consultant for general internal medicine
    • Miller R.A., Pople Jr. H.E., and Myers J.D. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N. Engl. J. Med. 307 (1982) 468-476
    • (1982) N. Engl. J. Med. , vol.307 , pp. 468-476
    • Miller, R.A.1    Pople Jr., H.E.2    Myers, J.D.3
  • 72
    • 0036320447 scopus 로고    scopus 로고
    • Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression
    • Andrews P.J., Sleeman D.H., Statham P.F., McQuatt A., Corruble V., Jones P.A., Howells T.P., and Macmillan C.S. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: a comparison between decision tree analysis and logistic regression. J. Neurosurg. 97 (2002) 326-336
    • (2002) J. Neurosurg. , vol.97 , pp. 326-336
    • Andrews, P.J.1    Sleeman, D.H.2    Statham, P.F.3    McQuatt, A.4    Corruble, V.5    Jones, P.A.6    Howells, T.P.7    Macmillan, C.S.8
  • 73
    • 0141923683 scopus 로고    scopus 로고
    • A classification tree for predicting recurrent falling in community-dwelling older persons
    • Stel V.S., Pluijm S.M., Deeg D.J., Smit J.H., Bouter L.M., and Lips P. A classification tree for predicting recurrent falling in community-dwelling older persons. J. Am. Geriatr. Soc. 51 (2003) 1356-1364
    • (2003) J. Am. Geriatr. Soc. , vol.51 , pp. 1356-1364
    • Stel, V.S.1    Pluijm, S.M.2    Deeg, D.J.3    Smit, J.H.4    Bouter, L.M.5    Lips, P.6
  • 75
    • 0344447109 scopus 로고    scopus 로고
    • Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms An empirical comparison between different approaches
    • Sierra B., and Larranaga P. Predicting survival in malignant skin melanoma using Bayesian networks automatically induced by genetic algorithms An empirical comparison between different approaches. Artif. Intell. Med. 14 (1998) 215-230
    • (1998) Artif. Intell. Med. , vol.14 , pp. 215-230
    • Sierra, B.1    Larranaga, P.2
  • 77
    • 33745138201 scopus 로고    scopus 로고
    • Knowledge-based data analysis and interpretation
    • Zupan B., Holmes J.H., and Bellazzi R. Knowledge-based data analysis and interpretation. Artif. Intell. Med. 37 (2006) 163-165
    • (2006) Artif. Intell. Med. , vol.37 , pp. 163-165
    • Zupan, B.1    Holmes, J.H.2    Bellazzi, R.3
  • 78
    • 0027627256 scopus 로고
    • The utility of background knowledge in learning medical diagnostic rules
    • Lavrac N., Dzeroski S., Pirnat V., and Krizman V. The utility of background knowledge in learning medical diagnostic rules. Appl. Artif. Intelligen. 7 (1993) 273-293
    • (1993) Appl. Artif. Intelligen. , vol.7 , pp. 273-293
    • Lavrac, N.1    Dzeroski, S.2    Pirnat, V.3    Krizman, V.4
  • 79
    • 0028238937 scopus 로고
    • An influence diagram for assessing GVHD prophylaxis after bone marrow transplantation in children
    • Quaglini S., Bellazzi R., Locatelli F., Stefanelli M., and Salvaneschi C. An influence diagram for assessing GVHD prophylaxis after bone marrow transplantation in children. Med. Decis. Mak. 14 (1994) 223-235
    • (1994) Med. Decis. Mak. , vol.14 , pp. 223-235
    • Quaglini, S.1    Bellazzi, R.2    Locatelli, F.3    Stefanelli, M.4    Salvaneschi, C.5
  • 80
    • 0035214145 scopus 로고    scopus 로고
    • Knowledge-based and data-driven models in arrhythmia fuzzy classification
    • Silipo R., Vergassola R., Zong W., and Berthold M.R. Knowledge-based and data-driven models in arrhythmia fuzzy classification. Meth. Inf. Med. 40 (2001) 397-402
    • (2001) Meth. Inf. Med. , vol.40 , pp. 397-402
    • Silipo, R.1    Vergassola, R.2    Zong, W.3    Berthold, M.R.4
  • 82
    • 77954143839 scopus 로고    scopus 로고
    • Expert knowledge and its role in learning Bayesian Networks in medicine: an appraisal
    • Quaglini S., Barahona P., and Andreassen S. (Eds), Springer, Berlin
    • Lucas P. Expert knowledge and its role in learning Bayesian Networks in medicine: an appraisal. In: Quaglini S., Barahona P., and Andreassen S. (Eds). Artificial Intelligence in Medicine (2001), Springer, Berlin 156-166
    • (2001) Artificial Intelligence in Medicine , pp. 156-166
    • Lucas, P.1
  • 83
    • 85008015613 scopus 로고    scopus 로고
    • Building probabilistic networks: "Where do the numbers come from?"
    • Druzdzel M.J., and van der Gaag L.C. Building probabilistic networks: "Where do the numbers come from?". IEEE Transn. Knowl. Data Eng. 12 (2000) 481-486
    • (2000) IEEE Transn. Knowl. Data Eng. , vol.12 , pp. 481-486
    • Druzdzel, M.J.1    van der Gaag, L.C.2
  • 84
    • 0034262312 scopus 로고    scopus 로고
    • Sensitivity analysis: an aid for belief-network quantification
    • Coupe V.M.H., Van der Gaag L.C., and Habbema J.D.F. Sensitivity analysis: an aid for belief-network quantification. Knowl. Eng. Rev. 15 (2000) 215-232
    • (2000) Knowl. Eng. Rev. , vol.15 , pp. 215-232
    • Coupe, V.M.H.1    Van der Gaag, L.C.2    Habbema, J.D.F.3
  • 85
    • 8844261754 scopus 로고
    • The utility of background knowledge in inductive learning
    • Pazzani M., and Kibler D. The utility of background knowledge in inductive learning. Mach. Learn. 9 (1992) 57-94
    • (1992) Mach. Learn. , vol.9 , pp. 57-94
    • Pazzani, M.1    Kibler, D.2
  • 86
    • 0035210113 scopus 로고    scopus 로고
    • Acceptance of rules generated by machine learning among medical experts
    • Pazzani M.J., Mani S., and Shankle W.R. Acceptance of rules generated by machine learning among medical experts. Meth. Inf. Med. 40 (2001) 380-385
    • (2001) Meth. Inf. Med. , vol.40 , pp. 380-385
    • Pazzani, M.J.1    Mani, S.2    Shankle, W.R.3
  • 88
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 89
    • 0343081009 scopus 로고    scopus 로고
    • Machine learning for survival analysis: a case study on recurrence of prostate cancer
    • Zupan B., Demsar J., Kattan M.W., Beck J.R., and Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artif. Intell. Med. 20 (2000) 59-75
    • (2000) Artif. Intell. Med. , vol.20 , pp. 59-75
    • Zupan, B.1    Demsar, J.2    Kattan, M.W.3    Beck, J.R.4    Bratko, I.5
  • 93
    • 0022500965 scopus 로고
    • The use of relative operating characteristic (ROC) curves in test performance evaluation
    • Beck J.R., and Shultz E.K. The use of relative operating characteristic (ROC) curves in test performance evaluation. Arch. Pathol. Lab. Med. 110 (1986) 13-20
    • (1986) Arch. Pathol. Lab. Med. , vol.110 , pp. 13-20
    • Beck, J.R.1    Shultz, E.K.2
  • 94
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier G.W. Verification of forecasts expressed in terms of probability. Month. Weather Rev. 78 (1950) 1-3
    • (1950) Month. Weather Rev. , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 98
    • 33645199146 scopus 로고    scopus 로고
    • Factors that predict outcome of intensive care treatment in very elderly patients: a review
    • de Rooij S.E., Abu-Hanna A., Levi M., and de Jonge E. Factors that predict outcome of intensive care treatment in very elderly patients: a review. Crit. Care 9 (2005) R307-R314
    • (2005) Crit. Care , vol.9
    • de Rooij, S.E.1    Abu-Hanna, A.2    Levi, M.3    de Jonge, E.4
  • 100
  • 102
    • 0034879710 scopus 로고    scopus 로고
    • Knowledge management in healthcare: towards 'knowledge-driven' decision-support services
    • Abidi S.S. Knowledge management in healthcare: towards 'knowledge-driven' decision-support services. Int. J. Med. Inf. 63 (2001) 5-18
    • (2001) Int. J. Med. Inf. , vol.63 , pp. 5-18
    • Abidi, S.S.1
  • 103
    • 0033879297 scopus 로고    scopus 로고
    • Knowledge discovery from data?
    • Pazzani M. Knowledge discovery from data?. IEEE Intell. Syst. (March-April 2000) 10-13
    • (2000) IEEE Intell. Syst. , pp. 10-13
    • Pazzani, M.1
  • 104
    • 0036756222 scopus 로고    scopus 로고
    • Uniqueness of medical data mining
    • Cios K.J., and Moore G.W. Uniqueness of medical data mining. Artif. Intell. Med. 26 (2002) 1-24
    • (2002) Artif. Intell. Med. , vol.26 , pp. 1-24
    • Cios, K.J.1    Moore, G.W.2
  • 106
    • 0035214185 scopus 로고    scopus 로고
    • Intelligent data analysis
    • Bellazzi R., and Zupan B. Intelligent data analysis. Meth. Inf. Med. 40 (2001) 362-364
    • (2001) Meth. Inf. Med. , vol.40 , pp. 362-364
    • Bellazzi, R.1    Zupan, B.2
  • 107
    • 0037145950 scopus 로고    scopus 로고
    • Health care in the information society A prognosis for the year 2013
    • Haux R., Ammenwerth E., Herzog W., and Knaup P. Health care in the information society A prognosis for the year 2013. Int. J. Med. Inf. 66 (2002) 3-21
    • (2002) Int. J. Med. Inf. , vol.66 , pp. 3-21
    • Haux, R.1    Ammenwerth, E.2    Herzog, W.3    Knaup, P.4
  • 108
    • 37249025596 scopus 로고    scopus 로고
    • Towards 2020 Science, Available at http://research.microsoft.com/towards2020science.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.