-
1
-
-
53849092685
-
Will all americans become overweight or obese? Estimating the progression and cost of the us obesity epidemic
-
Y. Wang, M. A. Beydoun, L. Liang, B. Caballero, and S. K. Kumanyika, "Will all americans become overweight or obese? estimating the progression and cost of the us obesity epidemic," Obesity, vol. 16, no. 10, pp. 2323-2330, 2008.
-
(2008)
Obesity
, vol.16
, Issue.10
, pp. 2323-2330
-
-
Wang, Y.1
Beydoun, M.A.2
Liang, L.3
Caballero, B.4
Kumanyika, S.K.5
-
2
-
-
84876222948
-
Energy expenditure estimation using wearable sensors: A new methodology for activity-specific models
-
New York, NY, USA: ACM
-
M. Altini, J. Penders, and O. Amft, "Energy expenditure estimation using wearable sensors: A new methodology for activity-specific models," in Proceedings of the Conference on Wireless Health, ser. WH '12. New York, NY, USA: ACM, 2012, pp. 1:1-1:8.
-
(2012)
Proceedings of the Conference on Wireless Health, Ser. WH '12
, pp. 11-18
-
-
Altini, M.1
Penders, J.2
Amft, O.3
-
3
-
-
84925258469
-
Energy expenditure estimation with smartphone body sensors
-
A. Pande, Y. Zeng, A. K. Das, P. Mohapatra, S. Miyamoto, E. Seto, E. K. Henricson, and J. J. Han, "Energy expenditure estimation with smartphone body sensors," in Proceedings of the 8th International Conference on Body Area Networks, ser. BodyNets '13. ICST, 2013, pp. 8-14.
-
(2013)
Proceedings of the 8th International Conference on Body Area Networks, Ser. BodyNets '13. ICST
, pp. 8-14
-
-
Pande, A.1
Zeng, Y.2
Das, A.K.3
Mohapatra, P.4
Miyamoto, S.5
Seto, E.6
Henricson, E.K.7
Han, J.J.8
-
4
-
-
84949923086
-
Energy expenditure estimation in boys with duchene muscular dystrophy using accelerometer and heart rate sensors
-
Oct
-
A. Pande, G. Casazza, A. Nicorici, E. Seto, S. Miyamoto, M. Lange, T. Abresch, P. Mohapatra, and J. Han, "Energy expenditure estimation in boys with duchene muscular dystrophy using accelerometer and heart rate sensors," in Healthcare Innovation Conference (HIC), 2014 IEEE, Oct 2014, pp. 26-29.
-
(2014)
Healthcare Innovation Conference (HIC), 2014 IEEE
, pp. 26-29
-
-
Pande, A.1
Casazza, G.2
Nicorici, A.3
Seto, E.4
Miyamoto, S.5
Lange, M.6
Abresch, T.7
Mohapatra, P.8
Han, J.9
-
5
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
D. Ciresan, U. Meier, and J. Schmidhuber, "Multi-column deep neural networks for image classification," in in proceedings of CVPR 2012, 2012, pp. 3642-3649.
-
(2012)
Proceedings of CVPR 2012
, pp. 3642-3649
-
-
Ciresan, D.1
Meier, U.2
Schmidhuber, J.3
-
6
-
-
84870183903
-
3d convolutional neural networks for human action recognition
-
Jan
-
S. Ji, W. Xu, M. Yang, and K. Yu, "3d convolutional neural networks for human action recognition," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 1, pp. 221-231, Jan 2013.
-
(2013)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
7
-
-
83655203046
-
Evaluation of artificial neural network algorithms for predicting mets and activity type from accelerometer data: Validation on an independent sample
-
P. S. Freedson, K. Lyden, S. Kozey-Keadle, and J. Staudenmayer, "Evaluation of artificial neural network algorithms for predicting mets and activity type from accelerometer data: validation on an independent sample," J Appl Physiol (1985), vol. 111, no. 6, pp. 1804-12, 2011.
-
(2011)
J Appl Physiol (1985)
, vol.111
, Issue.6
, pp. 1804-1812
-
-
Freedson, P.S.1
Lyden, K.2
Kozey-Keadle, S.3
Staudenmayer, J.4
-
8
-
-
35348971908
-
An artificial neural network model of energy expenditure using nonintegrated acceleration signals
-
M. P. Rothney, M. Neumann, A. Beziat, and K. Y. Chen, "An artificial neural network model of energy expenditure using nonintegrated acceleration signals," J Appl Physiol (1985), vol. 103, no. 4, pp. 1419-27, 2007.
-
(2007)
J Appl Physiol (1985)
, vol.103
, Issue.4
, pp. 1419-1427
-
-
Rothney, M.P.1
Neumann, M.2
Beziat, A.3
Chen, K.Y.4
-
9
-
-
78650027970
-
Using wearable activity type detection to improve physical activity energy expenditure estimation
-
New York, NY, USA: ACM
-
F. Albinali, S. Intille, W. Haskell, and M. Rosenberger, "Using wearable activity type detection to improve physical activity energy expenditure estimation," in Proceedings of the 12th ACM International Conference on Ubiquitous Computing, ser. UbiComp '10. New York, NY, USA: ACM, 2010, pp. 311-320.
-
(2010)
Proceedings of the 12th ACM International Conference on Ubiquitous Computing, Ser. UbiComp '10
, pp. 311-320
-
-
Albinali, F.1
Intille, S.2
Haskell, W.3
Rosenberger, M.4
-
10
-
-
84859590080
-
Divide and conquer: Assessing energy expenditure following physical activity type classification
-
author reply 933
-
A. G. Bonomi and G. Plasqui, ""divide and conquer": Assessing energy expenditure following physical activity type classification," J Appl Physiol (1985), vol. 112, no. 5, p. 932; author reply 933, 2012.
-
(2012)
J Appl Physiol (1985)
, vol.112
, Issue.5
, pp. 932
-
-
Bonomi, A.G.1
Plasqui, G.2
-
11
-
-
84903724014
-
Deep learning: Methods and applications
-
8211;4, Jun.
-
L. Deng and D. Yu, "Deep learning: Methods and applications," Found. Trends Signal Process., vol. 7, no. 3 ;4, pp. 197-387, Jun. 2014.
-
(2014)
Found. Trends Signal Process.
, vol.7
, Issue.3
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
12
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
W. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, 1943.
-
(1943)
The Bulletin of Mathematical Biophysics
, vol.5
, Issue.4
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
13
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Jul.
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
14
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural networks," in Advances in Neural Information Processing Systems, 2014, pp. 3104-3112.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
15
-
-
84883524644
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng, "Building high-level features using large scale unsupervised learning," in In International Conference on Machine Learning, 2012. 103, 2012.
-
(2012)
International Conference on Machine Learning, 2012
, pp. 103
-
-
Le, Q.V.1
Monga, R.2
Devin, M.3
Chen, K.4
Corrado, G.S.5
Dean, J.6
Ng, A.Y.7
-
16
-
-
84958543676
-
Time series classification using multi-channels deep convolutional neural networks
-
Springer International Publishing
-
Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. Zhao, "Time series classification using multi-channels deep convolutional neural networks," in Web-Age Information Management, ser. Lecture Notes in Computer Science. Springer International Publishing, 2014, vol. 8485, pp. 298-310.
-
(2014)
Web-Age Information Management, Ser. Lecture Notes in Computer Science
, vol.8485
, pp. 298-310
-
-
Zheng, Y.1
Liu, Q.2
Chen, E.3
Ge, Y.4
Zhao, J.5
-
17
-
-
84966560963
-
-
M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang, "Convolutional neural networks for human activity recognition using mobile sensors," 2014.
-
(2014)
Convolutional Neural Networks for Human Activity Recognition Using Mobile Sensors
-
-
Zeng, M.1
Nguyen, L.T.2
Yu, B.3
Mengshoel, O.J.4
Zhu, J.5
Wu, P.6
Zhang, J.7
-
18
-
-
35048842427
-
Activity recognition from user-annotated acceleration data
-
A. Ferscha and F. Mattern, Eds. Springer Berlin Heidelberg
-
L. Bao and S. Intille, "Activity recognition from user-annotated acceleration data," in Pervasive Computing, ser. Lecture Notes in Computer Science, A. Ferscha and F. Mattern, Eds., vol. 3001. Springer Berlin Heidelberg, 2004, pp. 1-17. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-24646-6 1
-
(2004)
Pervasive Computing, Ser. Lecture Notes in Computer Science
, vol.3001
, pp. 1-17
-
-
Bao, L.1
Intille, S.2
-
19
-
-
0021262232
-
The harris benedict equation reevaluated: Resting energy requirements and the body cell mass
-
A. M. Roza and H. M. Shizgal, "The harris benedict equation reevaluated: resting energy requirements and the body cell mass." The American Journal of Clinical Nutrition, vol. 40, no. 1, pp. 168-82, 1984.
-
(1984)
The American Journal of Clinical Nutrition
, vol.40
, Issue.1
, pp. 168-182
-
-
Roza, A.M.1
Shizgal, H.M.2
-
20
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
MIT Press
-
Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, U. D. Montral, and M. Qubec, "Greedy layer-wise training of deep networks," in In NIPS. MIT Press, 2007.
-
(2007)
NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
Montral, U.D.5
Qubec, M.6
-
21
-
-
84897544737
-
Theano: New features and speed improvements
-
F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron, N. Bouchard, and Y. Bengio, "Theano: new features and speed improvements," Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.
-
(2012)
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop
-
-
Bastien, F.1
Lamblin, P.2
Pascanu, R.3
Bergstra, J.4
Goodfellow, I.J.5
Bergeron, A.6
Bouchard, N.7
Bengio, Y.8
-
22
-
-
76749092270
-
The weka data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The weka data mining software: An update," ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.
-
(2009)
ACM SIGKDD Explorations Newsletter
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
|