메뉴 건너뛰기




Volumn 8, Issue 6, 2013, Pages

Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data

Author keywords

[No Author keywords available]

Indexed keywords

URIC ACID;

EID: 84879468407     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0066341     Document Type: Article
Times cited : (260)

References (63)
  • 1
    • 84860679595 scopus 로고    scopus 로고
    • Asthma phenotypes: the evolution from clinical to molecular approaches
    • Wenzel SE, (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18: 716-725.
    • (2012) Nat Med , vol.18 , pp. 716-725
    • Wenzel, S.E.1
  • 2
    • 67649563195 scopus 로고    scopus 로고
    • The heart failure spectrum: time for a phenotype-oriented approach
    • De Keulenaer GW, Brutsaert DL, (2009) The heart failure spectrum: time for a phenotype-oriented approach. Circulation 119: 3044-3046.
    • (2009) Circulation , vol.119 , pp. 3044-3046
    • De Keulenaer, G.W.1    Brutsaert, D.L.2
  • 3
    • 79955786255 scopus 로고    scopus 로고
    • Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum
    • {2004; discussion 2005, 1996
    • De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation 123: 1996{2004; discussion 2005.
    • (2011) Circulation , vol.123
    • De Keulenaer, G.W.1    Brutsaert, D.L.2
  • 4
    • 78650824776 scopus 로고    scopus 로고
    • Development of inpatient risk stratification models of acute kidney injury for use in electronic health records
    • Matheny ME, Miller RA, Ikizler TA, Waitman LR, Denny JC, et al. (2010) Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decis Making 30: 639-650.
    • (2010) Med Decis Making , vol.30 , pp. 639-650
    • Matheny, M.E.1    Miller, R.A.2    Ikizler, T.A.3    Waitman, L.R.4    Denny, J.C.5
  • 5
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Bengio Y, (2012) Deep learning of representations for unsupervised and transfer learning. JMLR Workshop and Conference Proceedings 27: 17-36.
    • (2012) JMLR Workshop and Conference Proceedings , vol.27 , pp. 17-36
    • Bengio, Y.1
  • 7
    • 77956583100 scopus 로고    scopus 로고
    • Integration of Early Physiological Responses Predicts Later Illness Severity in Preterm Infants
    • Saria S, Rajani AK, Gould J, Koller D, Penn AA, (2010) Integration of Early Physiological Responses Predicts Later Illness Severity in Preterm Infants. Sci Transl Med 2: 48ra65.
    • (2010) Sci Transl Med , vol.2
    • Saria, S.1    Rajani, A.K.2    Gould, J.3    Koller, D.4    Penn, A.A.5
  • 8
    • 79955869962 scopus 로고    scopus 로고
    • Unsupervised similarity-based risk stratification for cardiovascular events using long-term time-series data
    • Syed Z, Guttag J, (2011) Unsupervised similarity-based risk stratification for cardiovascular events using long-term time-series data. J Mach Learn Res 12: 999-1024.
    • (2011) J Mach Learn Res , vol.12 , pp. 999-1024
    • Syed, Z.1    Guttag, J.2
  • 9
    • 84866045813 scopus 로고    scopus 로고
    • Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach
    • 10.1145/2339530.2339605, doi:, doi
    • Wang F, Lee N, Hu J, Sun J, Ebadollahi S (2012) Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach. In: KDD. doi:10.1145/2339530.2339605.
    • (2012) In: KDD
    • Wang, F.1    Lee, N.2    Hu, J.3    Sun, J.4    Ebadollahi, S.5
  • 11
    • 33845455091 scopus 로고    scopus 로고
    • Temporal abstraction in intelligent clinical data analysis: A survey
    • Stacey M, McGregor C, (2007) Temporal abstraction in intelligent clinical data analysis: A survey. Artif Intell Med 39: 1-24.
    • (2007) Artif Intell Med , vol.39 , pp. 1-24
    • Stacey, M.1    McGregor, C.2
  • 12
    • 79953787924 scopus 로고    scopus 로고
    • Medical temporal-knowledge discovery via temporal abstraction
    • Moskovitch R, Shahar Y, (2009) Medical temporal-knowledge discovery via temporal abstraction. AMIA Annu Symp Proc 2009: 452-456.
    • (2009) AMIA Annu Symp Proc , vol.2009 , pp. 452-456
    • Moskovitch, R.1    Shahar, Y.2
  • 14
    • 80052329143 scopus 로고    scopus 로고
    • Using electronic patient records to discover disease correlations and stratify patient cohorts
    • Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, et al. (2011) Using electronic patient records to discover disease correlations and stratify patient cohorts. PLoS Comput Biol 7: e1002141.
    • (2011) PLoS Comput Biol , vol.7
    • Roque, F.S.1    Jensen, P.B.2    Schmock, H.3    Dalgaard, M.4    Andreatta, M.5
  • 15
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • Samuel AL, (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3: 211-229.
    • (1959) IBM J Res Dev , vol.3 , pp. 211-229
    • Samuel, A.L.1
  • 16
    • 0004761280 scopus 로고
    • Inductive learning of structural descriptions: Evaluation criteria and comparative review of selected methods
    • Dietterich TG, Michalski RS, (1981) Inductive learning of structural descriptions: Evaluation criteria and comparative review of selected methods. Artif Intell J 16: 257-294.
    • (1981) Artif Intell J , vol.16 , pp. 257-294
    • Dietterich, T.G.1    Michalski, R.S.2
  • 17
    • 65849284789 scopus 로고
    • Automatic feature generation for problem solving systems
    • Morgan Kaufmann
    • Fawcett TE, Utgoff PE (1992) Automatic feature generation for problem solving systems. In: Proc Int Conf Mach Learn. Morgan Kaufmann, 144-153.
    • (1992) In: Proc Int Conf Mach Learn , pp. 144-153
    • Fawcett, T.E.1    Utgoff, P.E.2
  • 18
    • 0036778917 scopus 로고    scopus 로고
    • Feature generation using general constructor functions
    • The MIT Press
    • Markovitch S, Rosenstein D (2002) Feature generation using general constructor functions. In: Mach Learn. The MIT Press, 59-98.
    • (2002) In: Mach Learn , pp. 59-98
    • Markovitch, S.1    Rosenstein, D.2
  • 19
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gnen M, Alpaydn E, (2011) Multiple kernel learning algorithms. J Mach Learn Res 12: 2211-2268.
    • (2011) J Mach Learn Res , vol.12 , pp. 2211-2268
    • Gnen, M.1    Alpaydn, E.2
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1
  • 22
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning - a new frontier in artificial intelligence research [research frontier]
    • Arel I, Rose D, Karnowski T, (2010) Deep machine learning- a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5: 13-18.
    • (2010) IEEE Comput Intell Mag , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.2    Karnowski, T.3
  • 23
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • Lee H, Grosse R, Ranganath R, Ng AY, (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54: 95-103.
    • (2011) Commun ACM , vol.54 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 26
    • 70449431315 scopus 로고    scopus 로고
    • Use of electronic medical records for health outcomes research: a literature review
    • Dean BB, Lam J, Natoli JL, Butler Q, Aguilar D, et al. (2009) Use of electronic medical records for health outcomes research: a literature review. Med Care Res Rev 66: 611-638.
    • (2009) Med Care Res Rev , vol.66 , pp. 611-638
    • Dean, B.B.1    Lam, J.2    Natoli, J.L.3    Butler, Q.4    Aguilar, D.5
  • 27
    • 49949092803 scopus 로고    scopus 로고
    • Automated identi_cation of acute hepatitis b using electronic medical record data to facilitate public health surveillance
    • Klompas M, Haney G, Church D, Lazarus R, Hou X, et al. (2008) Automated identi_cation of acute hepatitis b using electronic medical record data to facilitate public health surveillance. PLoS One 3: e2626.
    • (2008) PLoS One , vol.3
    • Klompas, M.1    Haney, G.2    Church, D.3    Lazarus, R.4    Hou, X.5
  • 29
    • 79956327715 scopus 로고    scopus 로고
    • Using electronic health records to drive discovery in disease genomics
    • Kohane IS, (2011) Using electronic health records to drive discovery in disease genomics. Nat Rev Genet 12: 417-428.
    • (2011) Nat Rev Genet , vol.12 , pp. 417-428
    • Kohane, I.S.1
  • 30
    • 77950338000 scopus 로고    scopus 로고
    • Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record
    • Ritchie MD, Denny JC, Crawford DC, Ramirez AH, Weiner JB, et al. (2010) Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 86: 560-572.
    • (2010) Am J Hum Genet , vol.86 , pp. 560-572
    • Ritchie, M.D.1    Denny, J.C.2    Crawford, D.C.3    Ramirez, A.H.4    Weiner, J.B.5
  • 31
    • 84870749672 scopus 로고    scopus 로고
    • Analyzing the heterogeneity and complexity of electronic health record oriented phenotyping algorithms
    • Conway M, Berg RL, Carrell D, Denny JC, Kho AN, et al. (2011) Analyzing the heterogeneity and complexity of electronic health record oriented phenotyping algorithms. AMIA Annu Symp Proc 2011: 274-283.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 274-283
    • Conway, M.1    Berg, R.L.2    Carrell, D.3    Denny, J.C.4    Kho, A.N.5
  • 33
    • 84874213343 scopus 로고    scopus 로고
    • Naive electronic health record phenotype identification for rheumatoid arthritis
    • Carroll RJ, Eyler AE, Denny JC, (2011) Naive electronic health record phenotype identification for rheumatoid arthritis. AMIA Annu Symp Proc 2011: 189-196.
    • (2011) AMIA Annu Symp Proc , vol.2011 , pp. 189-196
    • Carroll, R.J.1    Eyler, A.E.2    Denny, J.C.3
  • 34
    • 0029943501 scopus 로고    scopus 로고
    • Abnormal serum uric acid levels in children
    • Wilcox W, (1996) Abnormal serum uric acid levels in children. J Pediatr 128: 731-741.
    • (1996) J Pediatr , vol.128 , pp. 731-741
    • Wilcox, W.1
  • 35
    • 82855181731 scopus 로고    scopus 로고
    • Is there anything good in uric acid?
    • Alvarez-Lario B, Macarrn-Vicente J, (2011) Is there anything good in uric acid? QJM 104: 1015-1024.
    • (2011) QJM , vol.104 , pp. 1015-1024
    • Alvarez-Lario, B.1    Macarrn-Vicente, J.2
  • 36
    • 79551559557 scopus 로고    scopus 로고
    • Gout
    • Neogi T, (2011) Gout. N Engl J Med 364: 443-452.
    • (2011) N Engl J Med , vol.364 , pp. 443-452
    • Neogi, T.1
  • 38
    • 49949093313 scopus 로고    scopus 로고
    • Development of a large-scale de-identified dna biobank to enable personalized medicine
    • Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, et al. (2008) Development of a large-scale de-identified dna biobank to enable personalized medicine. Clin Pharmacol Ther 84: 362-369.
    • (2008) Clin Pharmacol Ther , vol.84 , pp. 362-369
    • Roden, D.M.1    Pulley, J.M.2    Basford, M.A.3    Bernard, G.R.4    Clayton, E.W.5
  • 39
  • 40
    • 84972545853 scopus 로고
    • A statistical perspective on ill-posed inverse problems
    • O'Sullivan F, (1986) A statistical perspective on ill-posed inverse problems. Stat Sci 1: 502-518.
    • (1986) Stat Sci , vol.1 , pp. 502-518
    • O'Sullivan, F.1
  • 42
    • 84867422793 scopus 로고    scopus 로고
    • Gaussian Processes for Machine Learning
    • Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. MIT.
    • (2006) MIT
    • Rasmussen, C.E.1    Williams, C.K.I.2
  • 45
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to Gaussian processes
    • In: Bishop CM, editor, Berlin: Springer, volume 168 of NATO ASI Series
    • MacKay DJC (1998) Introduction to Gaussian processes. In: Bishop CM, editor, Neural Networks and Machine Learning, Berlin: Springer, volume 168 of NATO ASI Series. 133-165.
    • (1998) Neural Networks and Machine Learning , pp. 133-165
    • MacKay, D.J.C.1
  • 46
    • 84899028582 scopus 로고    scopus 로고
    • Nonstationary covariance functions for gaussian process regression
    • In: Thrun S, Saul L, Schölkopf B, editors, Cambridge, MA: MIT Press
    • Paciorek CJ, Schervish MJ (2004) Nonstationary covariance functions for gaussian process regression. In: Thrun S, Saul L, Schölkopf B, editors, Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems
    • Paciorek, C.J.1    Schervish, M.J.2
  • 47
    • 0042171731 scopus 로고    scopus 로고
    • Bayesian inference for non-stationary spatial covariance structure via spatial deformations
    • Schmidt AM, O'Hagan A, (2003) Bayesian inference for non-stationary spatial covariance structure via spatial deformations. J R Stat Soc Series B Stat Methodol 65: 743-758.
    • (2003) J R Stat Soc Series B Stat Methodol , vol.65 , pp. 743-758
    • Schmidt, A.M.1    O'Hagan, A.2
  • 48
    • 54949111733 scopus 로고    scopus 로고
    • Bayesian treed Gaussian process models with an application to computer modeling
    • Gramacy RB, Lee HKH, (2008) Bayesian treed Gaussian process models with an application to computer modeling. J Am Stat Assoc 103: 1119-1130.
    • (2008) J Am Stat Assoc , vol.103 , pp. 1119-1130
    • Gramacy, R.B.1    Lee, H.K.H.2
  • 49
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards ai
    • In: Bottou L, Chapelle O, Decoste D, Weston J, editors, MIT Press
    • Bengio Y, Lecun Y (2007) Scaling learning algorithms towards ai. In: Bottou L, Chapelle O, Decoste D, Weston J, editors, Large-Scale Kernel Machines, MIT Press.
    • (2007) Large-Scale Kernel Machines
    • Bengio, Y.1    Lecun, Y.2
  • 50
    • 84887482314 scopus 로고    scopus 로고
    • Available: Tutorial. Accessed September 5, 2012
    • Ng A, Ngiam J, Foo CY, Mai Y, Suen C (2011). UFLDL tutorial. Available: http://deeplearning.stanford.edu/wiki/index.php/UFLDL Tutorial. Accessed September 5, 2012.
    • (2011) UFLDL tutorial
    • Ng, A.1    Ngiam, J.2    Foo, C.Y.3    Mai, Y.4    Suen, C.5
  • 51
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu DC, Nocedal J, (1989) On the limited memory BFGS method for large scale optimization. Math Program 45: 503-528.
    • (1989) Math Program , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 52
    • 80053437034 scopus 로고    scopus 로고
    • On optimization methods for deep learning
    • In: Getoor L, Scheffer T, editors
    • Le Q, Ngiam J, Coates A, Lahiri A, Prochnow B, et al. (2011) On optimization methods for deep learning. In: Getoor L, Scheffer T, editors, Proc Int Conf Mach Learn. 265-272.
    • (2011) Proc Int Conf Mach Learn , pp. 265-272
    • Le, Q.1    Ngiam, J.2    Coates, A.3    Lahiri, A.4    Prochnow, B.5
  • 56
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: transfer learning from unlabeled data
    • doi
    • Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from unlabeled data. In: Proc Int Conf Mach Learn. 759-766. doi: http://doi.acm.org/10.1145/1273496.1273592.
    • (2007) In: Proc Int Conf Mach Learn , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 58
    • 84879476328 scopus 로고    scopus 로고
    • Hosmer DW, Lemeshow S (2000) Applied Logistic Regression. New York: Wiley
    • Hosmer DW, Lemeshow S (2000) Applied Logistic Regression. New York: Wiley.
  • 59
    • 26044460461 scopus 로고    scopus 로고
    • The use of receiver operating characteristic curves in biomedical informatics
    • Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L, (2005) The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 38: 404-415.
    • (2005) J Biomed Inform , vol.38 , pp. 404-415
    • Lasko, T.A.1    Bhagwat, J.G.2    Zou, K.H.3    Ohno-Machado, L.4
  • 60
    • 84907095419 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Core Team, Vienna, Austria. Available:. ISBN 3-900051-07-0
    • R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-project.org/. ISBN 3-900051-07-0.
    • (2012) R Foundation for Statistical Computing
  • 61
    • 84879481892 scopus 로고    scopus 로고
    • The GPML toolbox version 3.1. Available
    • Rasmussen CE, Nickisch H (2011) The GPML toolbox version 3.1. Available: www.gaussianprocess.org.
    • (2011)
    • Rasmussen, C.E.1    Nickisch, H.2
  • 62
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T, (2005) Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol 67: 301-320.
    • (2005) J R Stat Soc Series B Stat Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 63
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman JH, Hastie T, Tibshirani R, (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33: 1-22.
    • (2010) J Stat Softw , vol.33 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.