메뉴 건너뛰기




Volumn 24-28-October-2016, Issue , 2016, Pages 308-318

Deep learning with differential privacy

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; COMPLEX NETWORKS; LEARNING SYSTEMS;

EID: 84995527907     PISSN: 15437221     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2976749.2978318     Document Type: Conference Paper
Times cited : (5299)

References (58)
  • 5
    • 33745629638 scopus 로고    scopus 로고
    • On k-anonymity and the curse of dimensionality
    • C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In VLDB, pages 901-909, 2005.
    • (2005) VLDB , pp. 901-909
    • Aggarwal, C.C.1
  • 6
    • 0041783510 scopus 로고    scopus 로고
    • Privacy-preserving data mining
    • ACM
    • R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD, pages 439-450. ACM, 2000.
    • (2000) SIGMOD , pp. 439-450
    • Agrawal, R.1    Srikant, R.2
  • 8
    • 84920025979 scopus 로고    scopus 로고
    • Private empirical risk minimization: Efficient algorithms and tight error bounds
    • IEEE
    • R. Bassily, A. D. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms and tight error bounds. In FOCS, pages 464-473. IEEE, 2014.
    • (2014) FOCS , pp. 464-473
    • Bassily, R.1    Smith, A.D.2    Thakurta, A.3
  • 9
    • 84894624083 scopus 로고    scopus 로고
    • Bounds on the sample complexity for private learning and private data release
    • A. Beimel, H. Brenner, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample complexity for private learning and private data release. Machine Learning, 94(3):401-437, 2014.
    • (2014) Machine Learning , vol.94 , Issue.3 , pp. 401-437
    • Beimel, A.1    Brenner, H.2    Kasiviswanathan, S.P.3    Nissim, K.4
  • 10
    • 65449147584 scopus 로고    scopus 로고
    • The cost of privacy: Destruction of data-mining utility in anonymized data publishing
    • ACM
    • J. Brickell and V. Shmatikov. The cost of privacy: Destruction of data-mining utility in anonymized data publishing. In KDD, pages 70-78. ACM, 2008.
    • (2008) KDD , pp. 70-78
    • Brickell, J.1    Shmatikov, V.2
  • 11
    • 84994414352 scopus 로고    scopus 로고
    • Concentrated differential privacy: Simplifications, extensions, and lower bounds
    • 1605.02065
    • M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds. CoRR, abs/1605.02065, 2016.
    • (2016) CoRR
    • Bun, M.1    Steinke, T.2
  • 13
    • 84888340666 scopus 로고    scopus 로고
    • Torch7: A Matlab-like environment for machine learning
    • number EPFL-CONF-192376
    • R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.
    • (2011) BigLearn, NIPS Workshop
    • Collobert, R.1    Kavukcuoglu, K.2    Farabet, C.3
  • 14
    • 79958697382 scopus 로고    scopus 로고
    • Beyond simple features: A large-scale feature search approach to unconstrained face recognition
    • IEEE
    • D. D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In FG 2011, pages 8-15. IEEE, 2011.
    • (2011) FG 2011 , pp. 8-15
    • Cox, D.D.1    Pinto, N.2
  • 15
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • D. Silver, A. Huang, C. J. Maddison et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
    • (2016) Nature , vol.529 , Issue.7587 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.J.3
  • 16
    • 84995516499 scopus 로고    scopus 로고
    • Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity
    • 1602.05897
    • A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. CoRR, abs/1602.05897, 2016.
    • (2016) CoRR
    • Daniely, A.1    Frostig, R.2    Singer, Y.3
  • 17
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • July
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Machine Learning Research, 12:2121-2159, July 2011.
    • (2011) J. Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 18
    • 78650804208 scopus 로고    scopus 로고
    • A firm foundation for private data analysis
    • Jan.
    • C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86-95, Jan. 2011.
    • (2011) Commun. ACM , vol.54 , Issue.1 , pp. 86-95
    • Dwork, C.1
  • 19
    • 33746037200 scopus 로고    scopus 로고
    • Our data, ourselves: Privacy via distributed noise generation
    • Springer
    • C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486-503. Springer, 2006.
    • (2006) EUROCRYPT , pp. 486-503
    • Dwork, C.1    Kenthapadi, K.2    McSherry, F.3    Mironov, I.4    Naor, M.5
  • 20
    • 70350682013 scopus 로고    scopus 로고
    • Differential privacy and robust statistics
    • ACM
    • C. Dwork and J. Lei. Differential privacy and robust statistics. In STOC, pages 371-380. ACM, 2009.
    • (2009) STOC , pp. 371-380
    • Dwork, C.1    Lei, J.2
  • 21
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • Springer
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284. Springer, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 23
    • 84994397178 scopus 로고    scopus 로고
    • Concentrated differential privacy
    • 1603.01887
    • C. Dwork and G. N. Rothblum. Concentrated differential privacy. CoRR, abs/1603.01887, 2016.
    • (2016) CoRR
    • Dwork, C.1    Rothblum, G.N.2
  • 24
    • 78751522594 scopus 로고    scopus 로고
    • Boosting and differential privacy
    • IEEE
    • C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In FOCS, pages 51-60. IEEE, 2010.
    • (2010) FOCS , pp. 51-60
    • Dwork, C.1    Rothblum, G.N.2    Vadhan, S.3
  • 25
    • 84904360138 scopus 로고    scopus 로고
    • Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis
    • ACM
    • C. Dwork, K. Talwar, A. Thakurta, and L. Zhang. Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis. In STOC, pages 11-20. ACM, 2014.
    • (2014) STOC , pp. 11-20
    • Dwork, C.1    Talwar, K.2    Thakurta, A.3    Zhang, L.4
  • 26
    • 84954097669 scopus 로고    scopus 로고
    • Model inversion attacks that exploit confidence information and basic countermeasures
    • ACM
    • M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In CCS, pages 1322-1333. ACM, 2015.
    • (2015) CCS , pp. 1322-1333
    • Fredrikson, M.1    Jha, S.2    Ristenpart, T.3
  • 27
    • 84995534732 scopus 로고    scopus 로고
    • Efficient per-example gradient computations
    • 1510.01799v2
    • I. Goodfellow. Efficient per-example gradient computations. CoRR, abs/1510.01799v2, 2015.
    • (2015) CoRR
    • Goodfellow, I.1
  • 28
    • 84978059147 scopus 로고    scopus 로고
    • Fractional max-pooling
    • 1412.6071
    • B. Graham. Fractional max-pooling. CoRR, abs/1412.6071, 2014.
    • (2014) CoRR
    • Graham, B.1
  • 29
    • 77951678087 scopus 로고    scopus 로고
    • Differentially private combinatorial optimization
    • A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar. Differentially private combinatorial optimization. In SODA, pages 1106-1125, 2010.
    • (2010) SODA , pp. 1106-1125
    • Gupta, A.1    Ligett, K.2    McSherry, F.3    Roth, A.4    Talwar, K.5
  • 30
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
    • IEEE
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In ICCV, pages 1026-1034. IEEE, 2015.
    • (2015) ICCV , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 32
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • IEEE
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, pages 2146-2153. IEEE, 2009.
    • (2009) ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 33
    • 84898963415 scopus 로고    scopus 로고
    • Accelerating stochastic gradient descent using predictive variance reduction
    • R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In NIPS, pages 315-323, 2013.
    • (2013) NIPS , pp. 315-323
    • Johnson, R.1    Zhang, T.2
  • 34
    • 84969812974 scopus 로고    scopus 로고
    • The composition theorem for differential privacy
    • ACM
    • P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. In ICML, pages 1376-1385. ACM, 2015.
    • (2015) ICML , pp. 1376-1385
    • Kairouz, P.1    Oh, S.2    Viswanath, P.3
  • 36
    • 84920035372 scopus 로고    scopus 로고
    • Private convex optimization for empirical risk minimization with applications to high-dimensional regression
    • D. Kifer, A. D. Smith, and A. Thakurta. Private convex optimization for empirical risk minimization with applications to high-dimensional regression. In COLT, pages 25.1-25.40, 2012.
    • (2012) COLT , pp. 251-2540
    • Kifer, D.1    Smith, A.D.2    Thakurta, A.3
  • 37
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 39
    • 84974555530 scopus 로고    scopus 로고
    • Privacy preserving data mining
    • Springer
    • Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO, pages 36-54. Springer, 2000.
    • (2000) CRYPTO , pp. 36-54
    • Lindell, Y.1    Pinkas, B.2
  • 40
    • 85083951314 scopus 로고    scopus 로고
    • Move evaluation in Go using deep convolutional neural networks
    • C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go using deep convolutional neural networks. In ICLR, 2015.
    • (2015) ICLR
    • Maddison, C.J.1    Huang, A.2    Sutskever, I.3    Silver, D.4
  • 41
    • 70350678967 scopus 로고    scopus 로고
    • Differentially private recommender systems: Building privacy into the Netflix Prize contenders
    • ACM
    • F. McSherry and I. Mironov. Differentially private recommender systems: Building privacy into the Netflix Prize contenders. In KDD, pages 627-636. ACM, 2009.
    • (2009) KDD , pp. 627-636
    • McSherry, F.1    Mironov, I.2
  • 42
    • 70849116921 scopus 로고    scopus 로고
    • Privacy integrated queries: An extensible platform for privacy-preserving data analysis
    • ACM
    • F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In SIGMOD, pages 19-30. ACM, 2009.
    • (2009) SIGMOD , pp. 19-30
    • McSherry, F.D.1
  • 43
    • 85083951332 scopus 로고    scopus 로고
    • Efficient estimation of word representations in vector space
    • abs/1301.3781
    • T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. CoRR abs/1301.3781, 2013
    • (2013) CoRR
    • Mikolov, T.1    Chen, K.2    Corrado, G.3    Dean, J.4
  • 46
    • 84961289992 scopus 로고    scopus 로고
    • GloVe: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In EMNLP, pages 1532-1543, 2014.
    • (2014) EMNLP , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 47
    • 85007268662 scopus 로고    scopus 로고
    • Differential privacy preservation for deep auto-encoders: An application of human behavior prediction
    • N. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. In AAAI, pages 1309-1316, 2016.
    • (2016) AAAI , pp. 1309-1316
    • Phan, N.1    Wang, Y.2    Wu, X.3    Dou, D.4
  • 48
    • 80054960468 scopus 로고    scopus 로고
    • Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on Facebook
    • IEEE
    • N. Pinto, Z. Stone, T. E. Zickler, and D. Cox. Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on Facebook. In CVPR, pages 35-42. IEEE, 2011.
    • (2011) CVPR , pp. 35-42
    • Pinto, N.1    Stone, Z.2    Zickler, T.E.3    Cox, D.4
  • 49
    • 84995534739 scopus 로고    scopus 로고
    • Privacy odometers and filters: Pay-as-you-go composition
    • 1605.08294
    • R. M. Rogers, A. Roth, J. Ullman, and S. P. Vadhan. Privacy odometers and filters: Pay-as-you-go composition. CoRR, abs/1605.08294, 2016.
    • (2016) CoRR
    • Rogers, R.M.1    Roth, A.2    Ullman, J.3    Vadhan, S.P.4
  • 50
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct.
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 51
    • 80053448548 scopus 로고    scopus 로고
    • On random weights and unsupervised feature learning
    • ACM
    • A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsupervised feature learning. In ICML, pages 1089-1096. ACM, 2011.
    • (2011) ICML , pp. 1089-1096
    • Saxe, A.1    Koh, P.W.2    Chen, Z.3    Bhand, M.4    Suresh, B.5    Ng, A.6
  • 52
    • 84954108845 scopus 로고    scopus 로고
    • Privacy-preserving deep learning
    • ACM
    • R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS, pages 1310-1321. ACM, 2015.
    • (2015) CCS , pp. 1310-1321
    • Shokri, R.1    Shmatikov, V.2
  • 53
    • 84897680504 scopus 로고    scopus 로고
    • Stochastic gradient descent with differentially private updates
    • S. Song, K. Chaudhuri, and A. Sarwate. Stochastic gradient descent with differentially private updates. In GlobalSIP Conference, 2013.
    • (2013) GlobalSIP Conference
    • Song, S.1    Chaudhuri, K.2    Sarwate, A.3
  • 56
    • 85040309117 scopus 로고    scopus 로고
    • Large scale kernel learning using block coordinate descent
    • 1602.05310
    • S. Tu, R. Roelofs, S. Venkataraman, and B. Recht. Large scale kernel learning using block coordinate descent. CoRR, abs/1602.05310, 2016.
    • (2016) CoRR
    • Tu, S.1    Roelofs, R.2    Venkataraman, S.3    Recht, B.4
  • 58
    • 84995534768 scopus 로고    scopus 로고
    • Differentially private stochastic gradient descent for in-RDBMS analytics
    • 1606.04722
    • X. Wu, A. Kumar, K. Chaudhuri, S. Jha, and J. F. Naughton. Differentially private stochastic gradient descent for in-RDBMS analytics. CoRR, abs/1606.04722, 2016.
    • (2016) CoRR
    • Wu, X.1    Kumar, A.2    Chaudhuri, K.3    Jha, S.4    Naughton, J.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.