-
4
-
-
84995411732
-
Deep learning with differential privacy
-
1607.00133
-
M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning with differential privacy. CoRR, abs/1607.00133, 2016.
-
(2016)
CoRR
-
-
Abadi, M.1
Chu, A.2
Goodfellow, I.3
McMahan, H.B.4
Mironov, I.5
Talwar, K.6
Zhang, L.7
-
5
-
-
33745629638
-
On k-anonymity and the curse of dimensionality
-
C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In VLDB, pages 901-909, 2005.
-
(2005)
VLDB
, pp. 901-909
-
-
Aggarwal, C.C.1
-
6
-
-
0041783510
-
Privacy-preserving data mining
-
ACM
-
R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD, pages 439-450. ACM, 2000.
-
(2000)
SIGMOD
, pp. 439-450
-
-
Agrawal, R.1
Srikant, R.2
-
7
-
-
84979223173
-
Algorithmic stability for adaptive data analysis
-
ACM
-
R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic stability for adaptive data analysis. In STOC, pages 1046-1059. ACM, 2016.
-
(2016)
STOC
, pp. 1046-1059
-
-
Bassily, R.1
Nissim, K.2
Smith, A.3
Steinke, T.4
Stemmer, U.5
Ullman, J.6
-
8
-
-
84920025979
-
Private empirical risk minimization: Efficient algorithms and tight error bounds
-
IEEE
-
R. Bassily, A. D. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algorithms and tight error bounds. In FOCS, pages 464-473. IEEE, 2014.
-
(2014)
FOCS
, pp. 464-473
-
-
Bassily, R.1
Smith, A.D.2
Thakurta, A.3
-
9
-
-
84894624083
-
Bounds on the sample complexity for private learning and private data release
-
A. Beimel, H. Brenner, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample complexity for private learning and private data release. Machine Learning, 94(3):401-437, 2014.
-
(2014)
Machine Learning
, vol.94
, Issue.3
, pp. 401-437
-
-
Beimel, A.1
Brenner, H.2
Kasiviswanathan, S.P.3
Nissim, K.4
-
10
-
-
65449147584
-
The cost of privacy: Destruction of data-mining utility in anonymized data publishing
-
ACM
-
J. Brickell and V. Shmatikov. The cost of privacy: Destruction of data-mining utility in anonymized data publishing. In KDD, pages 70-78. ACM, 2008.
-
(2008)
KDD
, pp. 70-78
-
-
Brickell, J.1
Shmatikov, V.2
-
11
-
-
84994414352
-
Concentrated differential privacy: Simplifications, extensions, and lower bounds
-
1605.02065
-
M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds. CoRR, abs/1605.02065, 2016.
-
(2016)
CoRR
-
-
Bun, M.1
Steinke, T.2
-
13
-
-
84888340666
-
Torch7: A Matlab-like environment for machine learning
-
number EPFL-CONF-192376
-
R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.
-
(2011)
BigLearn, NIPS Workshop
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
14
-
-
79958697382
-
Beyond simple features: A large-scale feature search approach to unconstrained face recognition
-
IEEE
-
D. D. Cox and N. Pinto. Beyond simple features: A large-scale feature search approach to unconstrained face recognition. In FG 2011, pages 8-15. IEEE, 2011.
-
(2011)
FG 2011
, pp. 8-15
-
-
Cox, D.D.1
Pinto, N.2
-
15
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
D. Silver, A. Huang, C. J. Maddison et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
-
16
-
-
84995516499
-
Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity
-
1602.05897
-
A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity. CoRR, abs/1602.05897, 2016.
-
(2016)
CoRR
-
-
Daniely, A.1
Frostig, R.2
Singer, Y.3
-
17
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
July
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Machine Learning Research, 12:2121-2159, July 2011.
-
(2011)
J. Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
18
-
-
78650804208
-
A firm foundation for private data analysis
-
Jan.
-
C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86-95, Jan. 2011.
-
(2011)
Commun. ACM
, vol.54
, Issue.1
, pp. 86-95
-
-
Dwork, C.1
-
19
-
-
33746037200
-
Our data, ourselves: Privacy via distributed noise generation
-
Springer
-
C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486-503. Springer, 2006.
-
(2006)
EUROCRYPT
, pp. 486-503
-
-
Dwork, C.1
Kenthapadi, K.2
McSherry, F.3
Mironov, I.4
Naor, M.5
-
20
-
-
70350682013
-
Differential privacy and robust statistics
-
ACM
-
C. Dwork and J. Lei. Differential privacy and robust statistics. In STOC, pages 371-380. ACM, 2009.
-
(2009)
STOC
, pp. 371-380
-
-
Dwork, C.1
Lei, J.2
-
21
-
-
33745556605
-
Calibrating noise to sensitivity in private data analysis
-
Springer
-
C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284. Springer, 2006.
-
(2006)
TCC
, pp. 265-284
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
23
-
-
84994397178
-
Concentrated differential privacy
-
1603.01887
-
C. Dwork and G. N. Rothblum. Concentrated differential privacy. CoRR, abs/1603.01887, 2016.
-
(2016)
CoRR
-
-
Dwork, C.1
Rothblum, G.N.2
-
24
-
-
78751522594
-
Boosting and differential privacy
-
IEEE
-
C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In FOCS, pages 51-60. IEEE, 2010.
-
(2010)
FOCS
, pp. 51-60
-
-
Dwork, C.1
Rothblum, G.N.2
Vadhan, S.3
-
25
-
-
84904360138
-
Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis
-
ACM
-
C. Dwork, K. Talwar, A. Thakurta, and L. Zhang. Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis. In STOC, pages 11-20. ACM, 2014.
-
(2014)
STOC
, pp. 11-20
-
-
Dwork, C.1
Talwar, K.2
Thakurta, A.3
Zhang, L.4
-
26
-
-
84954097669
-
Model inversion attacks that exploit confidence information and basic countermeasures
-
ACM
-
M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In CCS, pages 1322-1333. ACM, 2015.
-
(2015)
CCS
, pp. 1322-1333
-
-
Fredrikson, M.1
Jha, S.2
Ristenpart, T.3
-
27
-
-
84995534732
-
Efficient per-example gradient computations
-
1510.01799v2
-
I. Goodfellow. Efficient per-example gradient computations. CoRR, abs/1510.01799v2, 2015.
-
(2015)
CoRR
-
-
Goodfellow, I.1
-
28
-
-
84978059147
-
Fractional max-pooling
-
1412.6071
-
B. Graham. Fractional max-pooling. CoRR, abs/1412.6071, 2014.
-
(2014)
CoRR
-
-
Graham, B.1
-
29
-
-
77951678087
-
Differentially private combinatorial optimization
-
A. Gupta, K. Ligett, F. McSherry, A. Roth, and K. Talwar. Differentially private combinatorial optimization. In SODA, pages 1106-1125, 2010.
-
(2010)
SODA
, pp. 1106-1125
-
-
Gupta, A.1
Ligett, K.2
McSherry, F.3
Roth, A.4
Talwar, K.5
-
30
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
IEEE
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In ICCV, pages 1026-1034. IEEE, 2015.
-
(2015)
ICCV
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
31
-
-
0030168832
-
Lua-an extensible extension language
-
R. Ierusalimschy, L. H. de Figueiredo, and W. Filho. Lua-an extensible extension language. Software: Practice and Experience, 26(6):635-652, 1996.
-
(1996)
Software: Practice and Experience
, vol.26
, Issue.6
, pp. 635-652
-
-
Ierusalimschy, R.1
De Figueiredo, L.H.2
Filho, W.3
-
32
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, pages 2146-2153. IEEE, 2009.
-
(2009)
ICCV
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
33
-
-
84898963415
-
Accelerating stochastic gradient descent using predictive variance reduction
-
R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In NIPS, pages 315-323, 2013.
-
(2013)
NIPS
, pp. 315-323
-
-
Johnson, R.1
Zhang, T.2
-
34
-
-
84969812974
-
The composition theorem for differential privacy
-
ACM
-
P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. In ICML, pages 1376-1385. ACM, 2015.
-
(2015)
ICML
, pp. 1376-1385
-
-
Kairouz, P.1
Oh, S.2
Viswanath, P.3
-
35
-
-
79960379430
-
What can we learn privately?
-
S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. D. Smith. What can we learn privately? SIAM J. Comput., 40(3):793-826, 2011.
-
(2011)
SIAM J. Comput.
, vol.40
, Issue.3
, pp. 793-826
-
-
Kasiviswanathan, S.P.1
Lee, H.K.2
Nissim, K.3
Raskhodnikova, S.4
Smith, A.D.5
-
36
-
-
84920035372
-
Private convex optimization for empirical risk minimization with applications to high-dimensional regression
-
D. Kifer, A. D. Smith, and A. Thakurta. Private convex optimization for empirical risk minimization with applications to high-dimensional regression. In COLT, pages 25.1-25.40, 2012.
-
(2012)
COLT
, pp. 251-2540
-
-
Kifer, D.1
Smith, A.D.2
Thakurta, A.3
-
37
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
38
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
39
-
-
84974555530
-
Privacy preserving data mining
-
Springer
-
Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO, pages 36-54. Springer, 2000.
-
(2000)
CRYPTO
, pp. 36-54
-
-
Lindell, Y.1
Pinkas, B.2
-
40
-
-
85083951314
-
Move evaluation in Go using deep convolutional neural networks
-
C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in Go using deep convolutional neural networks. In ICLR, 2015.
-
(2015)
ICLR
-
-
Maddison, C.J.1
Huang, A.2
Sutskever, I.3
Silver, D.4
-
41
-
-
70350678967
-
Differentially private recommender systems: Building privacy into the Netflix Prize contenders
-
ACM
-
F. McSherry and I. Mironov. Differentially private recommender systems: Building privacy into the Netflix Prize contenders. In KDD, pages 627-636. ACM, 2009.
-
(2009)
KDD
, pp. 627-636
-
-
McSherry, F.1
Mironov, I.2
-
42
-
-
70849116921
-
Privacy integrated queries: An extensible platform for privacy-preserving data analysis
-
ACM
-
F. D. McSherry. Privacy integrated queries: An extensible platform for privacy-preserving data analysis. In SIGMOD, pages 19-30. ACM, 2009.
-
(2009)
SIGMOD
, pp. 19-30
-
-
McSherry, F.D.1
-
43
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
abs/1301.3781
-
T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. CoRR abs/1301.3781, 2013
-
(2013)
CoRR
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
Dean, J.4
-
46
-
-
84961289992
-
GloVe: Global vectors for word representation
-
J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In EMNLP, pages 1532-1543, 2014.
-
(2014)
EMNLP
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.D.3
-
47
-
-
85007268662
-
Differential privacy preservation for deep auto-encoders: An application of human behavior prediction
-
N. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction. In AAAI, pages 1309-1316, 2016.
-
(2016)
AAAI
, pp. 1309-1316
-
-
Phan, N.1
Wang, Y.2
Wu, X.3
Dou, D.4
-
48
-
-
80054960468
-
Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on Facebook
-
IEEE
-
N. Pinto, Z. Stone, T. E. Zickler, and D. Cox. Scaling up biologically-inspired computer vision: A case study in unconstrained face recognition on Facebook. In CVPR, pages 35-42. IEEE, 2011.
-
(2011)
CVPR
, pp. 35-42
-
-
Pinto, N.1
Stone, Z.2
Zickler, T.E.3
Cox, D.4
-
49
-
-
84995534739
-
Privacy odometers and filters: Pay-as-you-go composition
-
1605.08294
-
R. M. Rogers, A. Roth, J. Ullman, and S. P. Vadhan. Privacy odometers and filters: Pay-as-you-go composition. CoRR, abs/1605.08294, 2016.
-
(2016)
CoRR
-
-
Rogers, R.M.1
Roth, A.2
Ullman, J.3
Vadhan, S.P.4
-
50
-
-
0022471098
-
Learning representations by back-propagating errors
-
Oct.
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, Oct. 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
51
-
-
80053448548
-
On random weights and unsupervised feature learning
-
ACM
-
A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsupervised feature learning. In ICML, pages 1089-1096. ACM, 2011.
-
(2011)
ICML
, pp. 1089-1096
-
-
Saxe, A.1
Koh, P.W.2
Chen, Z.3
Bhand, M.4
Suresh, B.5
Ng, A.6
-
52
-
-
84954108845
-
Privacy-preserving deep learning
-
ACM
-
R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In CCS, pages 1310-1321. ACM, 2015.
-
(2015)
CCS
, pp. 1310-1321
-
-
Shokri, R.1
Shmatikov, V.2
-
53
-
-
84897680504
-
Stochastic gradient descent with differentially private updates
-
S. Song, K. Chaudhuri, and A. Sarwate. Stochastic gradient descent with differentially private updates. In GlobalSIP Conference, 2013.
-
(2013)
GlobalSIP Conference
-
-
Song, S.1
Chaudhuri, K.2
Sarwate, A.3
-
55
-
-
84937522268
-
Going deeper with convolutions
-
IEEE
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, pages 1-9. IEEE, 2015.
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
56
-
-
85040309117
-
Large scale kernel learning using block coordinate descent
-
1602.05310
-
S. Tu, R. Roelofs, S. Venkataraman, and B. Recht. Large scale kernel learning using block coordinate descent. CoRR, abs/1602.05310, 2016.
-
(2016)
CoRR
-
-
Tu, S.1
Roelofs, R.2
Venkataraman, S.3
Recht, B.4
-
57
-
-
84965136196
-
Grammar as a foreign language
-
O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E. Hinton. Grammar as a foreign language. In NIPS, pages 2773-2781, 2015.
-
(2015)
NIPS
, pp. 2773-2781
-
-
Vinyals, O.1
Kaiser, L.2
Koo, T.3
Petrov, S.4
Sutskever, I.5
Hinton, G.E.6
-
58
-
-
84995534768
-
Differentially private stochastic gradient descent for in-RDBMS analytics
-
1606.04722
-
X. Wu, A. Kumar, K. Chaudhuri, S. Jha, and J. F. Naughton. Differentially private stochastic gradient descent for in-RDBMS analytics. CoRR, abs/1606.04722, 2016.
-
(2016)
CoRR
-
-
Wu, X.1
Kumar, A.2
Chaudhuri, K.3
Jha, S.4
Naughton, J.F.5
|