메뉴 건너뛰기




Volumn , Issue , 2015, Pages 117-122

Can deep learning revolutionize mobile sensing?

Author keywords

Activity Recognition; Deep Learning; Deep Neural Network; Mobile Sensing

Indexed keywords

DEEP NEURAL NETWORKS; ENGINES; LEARNING SYSTEMS; LOW POWER ELECTRONICS; MOBILE COMPUTING; NEURAL NETWORKS; OBJECT RECOGNITION; SPEECH RECOGNITION; SYSTEM-ON-CHIP; WEARABLE SENSORS;

EID: 84942430054     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2699343.2699349     Document Type: Conference Paper
Times cited : (241)

References (28)
  • 2
    • 84890491198 scopus 로고    scopus 로고
    • Recent advances in deep learning for speech research at microsoft
    • L. Deng, et al. Recent Advances in Deep Learning for Speech Research at Microsoft. In ICASSP '13.
    • ICASSP'13
    • Deng, L.1
  • 3
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • Jan
    • S. Ji, et al. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Trans. Pattern Anal. Mach. Intel, 35(1):221-231, Jan 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intel , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1
  • 5
    • 84905252895 scopus 로고    scopus 로고
    • Small-footprint keyword spotting using deep neural networks
    • G. Chen, et al. Small-footprint Keyword Spotting using Deep Neural Networks. In ICASSP '14.
    • ICASSP '14
    • Chen, G.1
  • 6
    • 59249092309 scopus 로고    scopus 로고
    • Activity sensing in the wild: A field trial of ubifit garden
    • S. Consolvo, et al. Activity Sensing in the Wild: A Field Trial of UbiFit Garden. In CHI '08.
    • CHI '08
    • Consolvo, S.1
  • 7
    • 84941233740 scopus 로고    scopus 로고
    • DeepFace: Closing the gap to human-level performance in face verification
    • Y. Taigman, et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In CVPR '14.
    • CVPR ' 14
    • Taigman, Y.1
  • 8
    • 84959527710 scopus 로고    scopus 로고
    • DSP. Ear: Leveraging co-processor support for continuous audio sensing on smartphones
    • P. Georgiev, et al. DSP. Ear: Leveraging Co-Processor Support for Continuous Audio Sensing on Smartphones. In SenSys 'Uh
    • SenSys 'Uh
    • Georgiev, P.1
  • 9
    • 84892582758 scopus 로고    scopus 로고
    • Combining modality specific deep neural networks for emotion recognition in video
    • S. E. Kahou. Combining Modality Specific Deep Neural Networks for Emotion Recognition in Video. In ICMI '13.
    • ICMI '13
    • Kahou, S.E.1
  • 10
    • 84887311171 scopus 로고    scopus 로고
    • Analysis of human behavior recognition algorithms based on acceleration data
    • B. Bruno, et al. Analysis of human behavior recognition algorithms based on acceleration data. In ICR A '13.
    • ICR A '13
    • Bruno, B.1
  • 11
    • 77954993714 scopus 로고    scopus 로고
    • MAUI: Making smartphones last longer with code offload
    • E. Cuervo, et al. MAUI: Making Smartphones Last Longer with Code Offload. In MobiSys '10.
    • MobiSys ' 10
    • Cuervo, E.1
  • 12
    • 84924404957 scopus 로고    scopus 로고
    • Convolutional neural networks for human activity recognition using mobile sensors
    • M. Zeng, et al. Convolutional Neural Networks for Human Activity Recognition using Mobile Sensors. In MobiCASE '14.
    • MobiCASE ' 14
    • Zeng, M.1
  • 14
    • 77949415384 scopus 로고    scopus 로고
    • OpenEar - Introducing the munich open-source emotion and affect recognition toolkit
    • F. Eyben, M. Wollmer, and B. Schuller. OpenEar - Introducing the Munich Open-source Emotion and Affect Recognition Toolkit. In In AGII.
    • AGII
    • Eyben, F.1    Wollmer, M.2    Schuller, B.3
  • 15
    • 84910060363 scopus 로고    scopus 로고
    • Speech emotion recognition using deep neural network and extreme learning machine
    • K. Han, D. Yu, and I. Tashev. Speech Emotion Recognition using Deep Neural Network and Extreme Learning Machine. In Interspeech '14.
    • Interspeech ' 14
    • Han, K.1    Yu, D.2    Tashev, I.3
  • 16
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep delief nets
    • July
    • G. E. Hinton, S. Osindero, and Y.-W. Teh. A Fast Learning Algorithm for Deep Delief Nets. Neural Comput., 18(7): 1527-1554, July 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 17
    • 84870491761 scopus 로고    scopus 로고
    • Enabling large-scale human activity inference on smartphones using community similarity networks (CSN)
    • N. Lane, et al. Enabling large-scale human activity inference on smartphones using community similarity networks (CSN). In UbiComp '11.
    • UbiComp'11
    • Lane, N.1
  • 18
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Q. V. Le, et al. Building high-level features using large scale unsupervised learning. In ICML '12.
    • ICML'12
    • Le, Q.V.1
  • 20
    • 84881166346 scopus 로고    scopus 로고
    • Speakersense: Energy efficient unobtrusive speaker identification on mobile phones
    • H. Lu, et al. Speakersense: Energy efficient unobtrusive speaker identification on mobile phones. In Pervasive '11.
    • Pervasive'11
    • Lu, H.1
  • 21
    • 84881185563 scopus 로고    scopus 로고
    • The jigsaw continuous sensing engine for mobile phone applications
    • H. Lu, et al. The jigsaw continuous sensing engine for mobile phone applications. In SenSys '10.
    • SenSys'10
    • Lu, H.1
  • 22
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • Dec
    • W. S. McCulloch and W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biology, 5(4):115-133, Dec 1943.
    • (1943) Bulletin of Mathematical Biology , vol.5 , Issue.4 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 23
    • 84881155894 scopus 로고    scopus 로고
    • Darwin phones: The evolution of sensing and inference on mobile phones
    • E. Miluzzo, et al. Darwin phones: The evolution of sensing and inference on mobile phones. In MobiSys '10.
    • MobiSys'10
    • Miluzzo, E.1
  • 24
    • 84881045411 scopus 로고    scopus 로고
    • Feature learning for activity recognition in ubiquitous computing
    • T. Plotz, et al. Feature learning for activity recognition in ubiquitous computing. In IJCAI '11.
    • IJCAI'11
    • Plotz, T.1
  • 25
    • 84881121947 scopus 로고    scopus 로고
    • Emotionsense: A mobile phones based adaptive platform for experimental social psychology research
    • K. K. Rachuri, et al. Emotionsense: A mobile phones based adaptive platform for experimental social psychology research. In UbiComp '10.
    • UbiComp'10
    • Rachuri, K.K.1
  • 26
    • 77749264950 scopus 로고    scopus 로고
    • Using mobile phones to determine transportation modes
    • Mar
    • S. Reddy, et al. Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw., 6(2):13:1-13:27, Mar. 2010.
    • (2010) ACM Trans. Sen. Netw. , vol.6 , Issue.2 , pp. 131-1327
    • Reddy, S.1
  • 27
    • 84942470216 scopus 로고    scopus 로고
    • Tracking human queues using single-point signal monitoring
    • Y. Wang, et al. Tracking human queues using single-point signal monitoring. In MobiSys '14.
    • MobiSys'14
    • Wang, Y.1
  • 28
    • 84890471125 scopus 로고    scopus 로고
    • On rectified linear units for speech processing
    • M. D. Zeiler, et al. On rectified linear units for speech processing. In ICASSP '13.
    • ICASSP'13
    • Zeiler, M.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.