메뉴 건너뛰기




Volumn 22, Issue 3, 2015, Pages 671-681

Pharmacovigilance from social media: Mining adverse drug reaction mentions using sequence labeling with word embedding cluster features

Author keywords

ADR; Adverse drug reaction; Deep learning word embeddings; Machine learning; Natural language processing; Pharmacovigilance; Social media mining

Indexed keywords

ACETYLSALICYLIC ACID; AMPHETAMINE PLUS DEXAMPHETAMINE; ARIPIPRAZOLE; CITALOPRAM; LORAZEPAM; PAROXETINE; QUETIAPINE; VENLAFAXINE; ZOLPIDEM TARTRATE;

EID: 84927943705     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocu041     Document Type: Article
Times cited : (474)

References (63)
  • 1
    • 3042723720 scopus 로고    scopus 로고
    • Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients
    • Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15-19.
    • (2004) BMJ , vol.329 , pp. 15-19
    • Pirmohamed, M.1    James, S.2    Meakin, S.3
  • 2
    • 84889572570 scopus 로고    scopus 로고
    • Clinical and economic burden of adverse drug reactions
    • Sultana J, Cutroneo P, Trifiro` G. Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother. 2013;4:S73-S77.
    • (2013) J Pharmacol Pharmacother. , vol.4 , pp. S73-S77
    • Sultana, J.1    Cutroneo, P.2    G.3    Trifiro4
  • 3
    • 70349970392 scopus 로고    scopus 로고
    • Consumer reporting of adverse drug reactions: a retrospective analysis of the Danish adverse drug reaction database from 2004 to 2006
    • Aagaard L, Nielsen LH, Hansen EH. Consumer reporting of adverse drug reactions: a retrospective analysis of the Danish adverse drug reaction database from 2004 to 2006. Drug Saf. 2009;32:1067-1074.
    • (2009) Drug Saf. , vol.32 , pp. 1067-1074
    • Aagaard, L.1    Nielsen, L.H.2    Hansen, E.H.3
  • 4
    • 79960770497 scopus 로고    scopus 로고
    • Evaluation of patient reporting of adverse drug reactions to the UK "Yellow Card Scheme": literature review, descriptive and qualitative analyses, and questionnaire surveys
    • Avery AJ, Anderson C, Bond CM, et al. Evaluation of patient reporting of adverse drug reactions to the UK "Yellow Card Scheme": literature review, descriptive and qualitative analyses, and questionnaire surveys. Southampton: NIHR HTA; 2011. doi:10.3310/hta15200.
    • (2011) Southampton: NIHR HTA
    • Avery, A.J.1    Anderson, C.2    Bond, C.M.3
  • 5
    • 36148944423 scopus 로고    scopus 로고
    • Evaluation of patients' experiences with antidepressants reported by means of a medicine reporting system
    • Van Geffen ECG, van der Wal SW, van Hulten R, et al. Evaluation of patients' experiences with antidepressants reported by means of a medicine reporting system. Eur J Clin Pharmacol. 2007;63:1193-1199.
    • (2007) Eur J Clin Pharmacol. , vol.63 , pp. 1193-1199
    • Van Geffen, E.C.G.1    van der Wal, S.W.2    van Hulten, R.3
  • 6
    • 80054869842 scopus 로고    scopus 로고
    • What can we learn from consumer reports on psychiatric adverse drug reactions with antidepressant medication? Experiences from reports to a consumer association
    • Vilhelmsson A, Svensson T, Meeuwisse A, et al. What can we learn from consumer reports on psychiatric adverse drug reactions with antidepressant medication? Experiences from reports to a consumer association. BMC Clin Pharmacol. 2011;11:16.
    • (2011) BMC Clin Pharmacol. , vol.11 , pp. 16
    • Vilhelmsson, A.1    Svensson, T.2    Meeuwisse, A.3
  • 7
    • 33646744337 scopus 로고    scopus 로고
    • Under-reporting of adverse drug reactions
    • Hazell L, Shakir SAW. Under-reporting of adverse drug reactions. Drug Saf. 2006;29:385-396.
    • (2006) Drug Saf. , vol.29 , pp. 385-396
    • Hazell, L.1    Shakir, S.A.W.2
  • 10
    • 84940389996 scopus 로고    scopus 로고
    • Accessed June
    • DailyStrength. http://www.dailystrength.org/. Accessed June, 2014.
    • (2014) DailyStrength
  • 12
    • 84875466594 scopus 로고    scopus 로고
    • ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites
    • LNCS
    • Yates A, Goharian N. ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. Adv Inf Retr. 2013;7814 LNCS: 816-819.
    • (2013) Adv Inf Retr. , vol.7814 , pp. 816-819
    • Yates, A.1    Goharian, N.2
  • 13
    • 84870409509 scopus 로고    scopus 로고
    • Detecting signals of adverse drug reactions from health consumer contributed content in social media
    • Beijing, August
    • Yang C, Jiang L, Yang H, et al. Detecting signals of adverse drug reactions from health consumer contributed content in social media. In: Proceedings of ACM SIGKDD Workshop on Health Informatics; Beijing, August, 2012.
    • (2012) Proceedings of ACM SIGKDD Workshop on Health Informatics
    • Yang, C.1    Jiang, L.2    Yang, H.3
  • 14
    • 84855919063 scopus 로고    scopus 로고
    • Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
    • Benton A, Ungar L, Hill S, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform. 2011;44:989-996.
    • (2011) J Biomed Inform. , vol.44 , pp. 989-996
    • Benton, A.1    Ungar, L.2    Hill, S.3
  • 16
    • 84903724014 scopus 로고    scopus 로고
    • Deep Learning: Methods and Applications
    • Deng L, Yu D. Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing. 2014;7: 197-387. http://dx.doi.org/10.1561/2000000039.
    • (2014) Foundations and Trends in Signal Processing , vol.7 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 17
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. J Mach Learn Res. 2011;1: 2493-2537.
    • (2011) J Mach Learn Res. , vol.1 , pp. 2493-2537
    • Collobert, R.1    Weston, J.2    Bottou, L.3
  • 18
    • 78649509581 scopus 로고    scopus 로고
    • Extraction of adverse drug effects from clinical records
    • Aramaki E, Miura Y, Tonoike M, et al. Extraction of adverse drug effects from clinical records. Stud Heal Technol Inf. 2010;160:739-743.
    • (2010) Stud Heal Technol Inf. , vol.160 , pp. 739-743
    • Aramaki, E.1    Miura, Y.2    Tonoike, M.3
  • 20
    • 84870452887 scopus 로고    scopus 로고
    • A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations
    • Wang W, Haerian K, Salmasian H, et al. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. AMIA Annu Symp Proc. 2011;2011:1464-1470.
    • (2011) AMIA Annu Symp Proc. , vol.2011 , pp. 1464-1470
    • Wang, W.1    Haerian, K.2    Salmasian, H.3
  • 21
    • 84942412129 scopus 로고    scopus 로고
    • Extraction of adverse drug effects from medical case reports
    • Gurulingappa H, Rajput A, Toldo L. Extraction of adverse drug effects from medical case reports. J Biomed Semantics. 2012;3:15. doi:10.1186/2041-1480-3-15.
    • (2012) J Biomed Semantics , vol.3 , pp. 15
    • Gurulingappa, H.1    Rajput, A.2    Toldo, L.3
  • 23
    • 84861346585 scopus 로고    scopus 로고
    • Novel data-mining methodologies for adverse drug event discovery and analysis
    • Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91:1010-1021.
    • (2012) Clin Pharmacol Ther. , vol.91 , pp. 1010-1021
    • Harpaz, R.1    DuMouchel, W.2    Shah, N.H.3
  • 24
    • 85076125394 scopus 로고    scopus 로고
    • Automatically recognizing medication and adverse event information from food and drug administration's adverse event reporting system narratives
    • Polepalli Ramesh B, Belknap SM, Li Z, et al. Automatically recognizing medication and adverse event information from food and drug administration's adverse event reporting system narratives. JMIR Med Informatics. 2014;2:e10.
    • (2014) JMIR Med Informatics. , vol.2 , pp. e10
    • Polepalli Ramesh, B.1    Belknap, S.M.2    Li, Z.3
  • 25
    • 84874210162 scopus 로고    scopus 로고
    • Pattern mining for extraction of mentions of adverse drug reactions from user comments
    • Nikfarjam A, Gonzalez G. Pattern mining for extraction of mentions of adverse drug reactions from user comments. AMIA Annu Symp Proc. 2011;2011:1019-1026.
    • (2011) AMIA Annu Symp Proc. , vol.2011 , pp. 1019-1026
    • Nikfarjam, A.1    Gonzalez, G.2
  • 26
    • 84881133007 scopus 로고    scopus 로고
    • AZDrugMiner: an information extraction system for mining patient-reported adverse drug events
    • August
    • Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events. In: Proceedings of the 2013 international conference on Smart Health. August 2013;134-150.
    • (2013) Proceedings of the 2013 international conference on Smart Health , pp. 134-150
    • Liu, X.1    Chen, H.2
  • 27
    • 84863556111 scopus 로고    scopus 로고
    • Predicting adverse drug events from personal health messages
    • Chee BW, Berlin R, Schatz B. Predicting adverse drug events from personal health messages. AMIA Annu Symp Proc. 2011;2011:217-226.
    • (2011) AMIA Annu Symp Proc. , vol.2011 , pp. 217-226
    • Chee, B.W.1    Berlin, R.2    Schatz, B.3
  • 28
    • 79955778144 scopus 로고    scopus 로고
    • Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm
    • Wicks P, Vaughan TE, Massagli MP, et al. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat Biotechnol. 2011;29:411-414.
    • (2011) Nat Biotechnol. , vol.29 , pp. 411-414
    • Wicks, P.1    Vaughan, T.E.2    Massagli, M.P.3
  • 30
    • 84924285421 scopus 로고    scopus 로고
    • Portable automatic text classification for adverse drug reaction detection via multi-corpus training
    • Press
    • Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Journal of biomedical informatics. 2014; In Press. doi:10.1016/j.jbi.2014.11.002.
    • (2014) Journal of biomedical informatics
    • Sarker, A.1    Gonzalez, G.2
  • 31
    • 84879892778 scopus 로고    scopus 로고
    • Web-scale pharmacovigilance: listening to signals from the crowd
    • White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc. 2013;20:404-408.
    • (2013) J Am Med Inform Assoc. , vol.20 , pp. 404-408
    • White, R.W.1    Tatonetti, N.P.2    Shah, N.H.3
  • 32
    • 76149120425 scopus 로고    scopus 로고
    • A side effect resource to capture phenotypic effects of drugs.
    • Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343.
    • (2010) Mol Syst Biol. , vol.6 , pp. 343
    • Kuhn, M.1    Campillos, M.2    Letunic, I.3
  • 33
    • 84940388690 scopus 로고    scopus 로고
    • Accessed September
    • SIDER 2 - Side Effect Resource. http://sideeffects.embl.de/. Accessed September, 2014.
    • (2014) SIDER 2 - Side Effect Resource
  • 34
    • 43049183213 scopus 로고    scopus 로고
    • Estimating consumer familiarity with health terminology: a contextbased approach
    • Zeng-Treitler Q, Goryachev S, Tse T, et al. Estimating consumer familiarity with health terminology: a contextbased approach. J Am Med Informatics Assoc. 2008;15: 349-356.
    • (2008) J Am Med Informatics Assoc. , vol.15 , pp. 349-356
    • Zeng-Treitler, Q.1    Goryachev, S.2    Tse, T.3
  • 35
    • 70349086122 scopus 로고    scopus 로고
    • MedDRA: an overview of the medical dictionary for regulatory activities
    • Mozzicato P. MedDRA: an overview of the medical dictionary for regulatory activities. Pharmaceut Med. 2009;23:65-75.
    • (2009) Pharmaceut Med. , vol.23 , pp. 65-75
    • Mozzicato, P.1
  • 36
    • 84905217429 scopus 로고    scopus 로고
    • Identifying adverse drug events from health social media: a case study on heart disease discussion
    • July
    • Liu X, Liu J, Chen H. Identifying adverse drug events from health social media: a case study on heart disease discussion. In: International Conference on Smart Health. July 2014:25-36.
    • (2014) International Conference on Smart Health , pp. 25-36
    • Liu, X.1    Liu, J.2    Chen, H.3
  • 37
    • 84865989881 scopus 로고    scopus 로고
    • Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
    • Gurulingappa H, Rajput AM, Roberts A, et al. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform. 2012;45:885-892.
    • (2012) J Biomed Inform. , vol.45 , pp. 885-892
    • Gurulingappa, H.1    Rajput, A.M.2    Roberts, A.3
  • 39
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37-46.
    • (1960) Educ Psychol Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 40
    • 18544372466 scopus 로고    scopus 로고
    • Understanding interobserver agreement: the kappa statistic
    • Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360-363.
    • (2005) Fam Med. , vol.37 , pp. 360-363
    • Viera, A.J.1    Garrett, J.M.2
  • 42
    • 40549140499 scopus 로고    scopus 로고
    • BANNER: an executable survey of advances in biomedical named entity recognition
    • Leaman R, Gonzalez G. BANNER: an executable survey of advances in biomedical named entity recognition. Pacific Symp Biocomput. 2008;13:652-663.
    • (2008) Pacific Symp Biocomput. , vol.13 , pp. 652-663
    • Leaman, R.1    Gonzalez, G.2
  • 44
    • 84940423733 scopus 로고    scopus 로고
    • Apache Lucene, Accessed November
    • Apache Lucene. http://lucene.apache.org/. Accessed November, 2014.
    • (2014)
  • 47
    • 84976702763 scopus 로고
    • WordNet: a lexical database for English
    • Miller GA. WordNet: a lexical database for English. Commun ACM. 1995;38:39-41.
    • (1995) Commun ACM. , vol.38 , pp. 39-41
    • Miller, G.A.1
  • 51
    • 84940423734 scopus 로고    scopus 로고
    • Accessed June
    • word2vec. https://code.google.com/p/word2vec/. Accessed June, 2014.
    • (2014)
  • 54
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
    • November
    • Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proc AMIA Symp. November 2001:17-21.
    • (2001) Proc AMIA Symp , pp. 17-21
    • Aronson, A.R.1
  • 56
    • 84925545091 scopus 로고    scopus 로고
    • Unsupervised Gene Function Extraction using Semantic Vectors
    • Emadzadeh E, Nikfarjam A, Ginn R, et al. Unsupervised Gene Function Extraction using Semantic Vectors. Database. 2014; 2014 doi: 10.1093/database/bau084.
    • (2014) Database , vol.2014
    • Emadzadeh, E.1    Nikfarjam, A.2    Ginn, R.3
  • 57
    • 79953325924 scopus 로고    scopus 로고
    • GeneTUKit: a software for document-level gene normalization
    • Huang M, Liu J, Zhu X. GeneTUKit: a software for document-level gene normalization. Bioinformatics. 2011;27:1032-1033.
    • (2011) Bioinformatics , vol.27 , pp. 1032-1033
    • Huang, M.1    Liu, J.2    Zhu, X.3
  • 58
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Mach Learn ECML-98. 1998;1398:137-142.
    • (1998) Mach Learn ECML-98 , vol.1398 , pp. 137-142
    • Joachims, T.1
  • 59
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale SVM learning practical
    • Schölkopf B, Burges C, Smola A, Cambridge, MA, MIT Press
    • Joachims T. Making large scale SVM learning practical. In: Schölkopf B, Burges C, Smola A. Advances in kernel methods - support vector learning. Cambridge, MA, MIT Press; 1999: 169-184.
    • (1999) Advances in kernel methods - support vector learning. , pp. 169-184
    • Joachims, T.1
  • 60
    • 33644946285 scopus 로고    scopus 로고
    • Various criteria in the evaluation of biomedical named entity recognition
    • Tsai RT-H, Wu S-H, Chou W-C, et al. Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics. 2006;7:92.
    • (2006) BMC Bioinformatics , vol.7 , pp. 92
    • Tsai, R.T.-H.1    Wu, S.-H.2    Chou, W.-C.3
  • 61
    • 0347606818 scopus 로고    scopus 로고
    • More accurate tests for the statistical significance of result differences
    • Saarbrueken, Germany, July
    • Yeh A. More accurate tests for the statistical significance of result differences. In: Proceedings of the 18th Conference on Computational linguistics. Saarbrueken, Germany, July 2000:947-953.
    • (2000) Proceedings of the 18th Conference on Computational linguistics , pp. 947-953
    • Yeh, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.