-
1
-
-
3042723720
-
Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients
-
Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15-19.
-
(2004)
BMJ
, vol.329
, pp. 15-19
-
-
Pirmohamed, M.1
James, S.2
Meakin, S.3
-
3
-
-
70349970392
-
Consumer reporting of adverse drug reactions: a retrospective analysis of the Danish adverse drug reaction database from 2004 to 2006
-
Aagaard L, Nielsen LH, Hansen EH. Consumer reporting of adverse drug reactions: a retrospective analysis of the Danish adverse drug reaction database from 2004 to 2006. Drug Saf. 2009;32:1067-1074.
-
(2009)
Drug Saf.
, vol.32
, pp. 1067-1074
-
-
Aagaard, L.1
Nielsen, L.H.2
Hansen, E.H.3
-
4
-
-
79960770497
-
Evaluation of patient reporting of adverse drug reactions to the UK "Yellow Card Scheme": literature review, descriptive and qualitative analyses, and questionnaire surveys
-
Avery AJ, Anderson C, Bond CM, et al. Evaluation of patient reporting of adverse drug reactions to the UK "Yellow Card Scheme": literature review, descriptive and qualitative analyses, and questionnaire surveys. Southampton: NIHR HTA; 2011. doi:10.3310/hta15200.
-
(2011)
Southampton: NIHR HTA
-
-
Avery, A.J.1
Anderson, C.2
Bond, C.M.3
-
5
-
-
36148944423
-
Evaluation of patients' experiences with antidepressants reported by means of a medicine reporting system
-
Van Geffen ECG, van der Wal SW, van Hulten R, et al. Evaluation of patients' experiences with antidepressants reported by means of a medicine reporting system. Eur J Clin Pharmacol. 2007;63:1193-1199.
-
(2007)
Eur J Clin Pharmacol.
, vol.63
, pp. 1193-1199
-
-
Van Geffen, E.C.G.1
van der Wal, S.W.2
van Hulten, R.3
-
6
-
-
80054869842
-
What can we learn from consumer reports on psychiatric adverse drug reactions with antidepressant medication? Experiences from reports to a consumer association
-
Vilhelmsson A, Svensson T, Meeuwisse A, et al. What can we learn from consumer reports on psychiatric adverse drug reactions with antidepressant medication? Experiences from reports to a consumer association. BMC Clin Pharmacol. 2011;11:16.
-
(2011)
BMC Clin Pharmacol.
, vol.11
, pp. 16
-
-
Vilhelmsson, A.1
Svensson, T.2
Meeuwisse, A.3
-
7
-
-
33646744337
-
Under-reporting of adverse drug reactions
-
Hazell L, Shakir SAW. Under-reporting of adverse drug reactions. Drug Saf. 2006;29:385-396.
-
(2006)
Drug Saf.
, vol.29
, pp. 385-396
-
-
Hazell, L.1
Shakir, S.A.W.2
-
10
-
-
84940389996
-
-
Accessed June
-
DailyStrength. http://www.dailystrength.org/. Accessed June, 2014.
-
(2014)
DailyStrength
-
-
-
12
-
-
84875466594
-
ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites
-
LNCS
-
Yates A, Goharian N. ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. Adv Inf Retr. 2013;7814 LNCS: 816-819.
-
(2013)
Adv Inf Retr.
, vol.7814
, pp. 816-819
-
-
Yates, A.1
Goharian, N.2
-
13
-
-
84870409509
-
Detecting signals of adverse drug reactions from health consumer contributed content in social media
-
Beijing, August
-
Yang C, Jiang L, Yang H, et al. Detecting signals of adverse drug reactions from health consumer contributed content in social media. In: Proceedings of ACM SIGKDD Workshop on Health Informatics; Beijing, August, 2012.
-
(2012)
Proceedings of ACM SIGKDD Workshop on Health Informatics
-
-
Yang, C.1
Jiang, L.2
Yang, H.3
-
14
-
-
84855919063
-
Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
-
Benton A, Ungar L, Hill S, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform. 2011;44:989-996.
-
(2011)
J Biomed Inform.
, vol.44
, pp. 989-996
-
-
Benton, A.1
Ungar, L.2
Hill, S.3
-
16
-
-
84903724014
-
Deep Learning: Methods and Applications
-
Deng L, Yu D. Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing. 2014;7: 197-387. http://dx.doi.org/10.1561/2000000039.
-
(2014)
Foundations and Trends in Signal Processing
, vol.7
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
17
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. J Mach Learn Res. 2011;1: 2493-2537.
-
(2011)
J Mach Learn Res.
, vol.1
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
-
18
-
-
78649509581
-
Extraction of adverse drug effects from clinical records
-
Aramaki E, Miura Y, Tonoike M, et al. Extraction of adverse drug effects from clinical records. Stud Heal Technol Inf. 2010;160:739-743.
-
(2010)
Stud Heal Technol Inf.
, vol.160
, pp. 739-743
-
-
Aramaki, E.1
Miura, Y.2
Tonoike, M.3
-
20
-
-
84870452887
-
A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations
-
Wang W, Haerian K, Salmasian H, et al. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. AMIA Annu Symp Proc. 2011;2011:1464-1470.
-
(2011)
AMIA Annu Symp Proc.
, vol.2011
, pp. 1464-1470
-
-
Wang, W.1
Haerian, K.2
Salmasian, H.3
-
21
-
-
84942412129
-
Extraction of adverse drug effects from medical case reports
-
Gurulingappa H, Rajput A, Toldo L. Extraction of adverse drug effects from medical case reports. J Biomed Semantics. 2012;3:15. doi:10.1186/2041-1480-3-15.
-
(2012)
J Biomed Semantics
, vol.3
, pp. 15
-
-
Gurulingappa, H.1
Rajput, A.2
Toldo, L.3
-
23
-
-
84861346585
-
Novel data-mining methodologies for adverse drug event discovery and analysis
-
Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91:1010-1021.
-
(2012)
Clin Pharmacol Ther.
, vol.91
, pp. 1010-1021
-
-
Harpaz, R.1
DuMouchel, W.2
Shah, N.H.3
-
24
-
-
85076125394
-
Automatically recognizing medication and adverse event information from food and drug administration's adverse event reporting system narratives
-
Polepalli Ramesh B, Belknap SM, Li Z, et al. Automatically recognizing medication and adverse event information from food and drug administration's adverse event reporting system narratives. JMIR Med Informatics. 2014;2:e10.
-
(2014)
JMIR Med Informatics.
, vol.2
, pp. e10
-
-
Polepalli Ramesh, B.1
Belknap, S.M.2
Li, Z.3
-
25
-
-
84874210162
-
Pattern mining for extraction of mentions of adverse drug reactions from user comments
-
Nikfarjam A, Gonzalez G. Pattern mining for extraction of mentions of adverse drug reactions from user comments. AMIA Annu Symp Proc. 2011;2011:1019-1026.
-
(2011)
AMIA Annu Symp Proc.
, vol.2011
, pp. 1019-1026
-
-
Nikfarjam, A.1
Gonzalez, G.2
-
26
-
-
84881133007
-
AZDrugMiner: an information extraction system for mining patient-reported adverse drug events
-
August
-
Liu X, Chen H. AZDrugMiner: an information extraction system for mining patient-reported adverse drug events. In: Proceedings of the 2013 international conference on Smart Health. August 2013;134-150.
-
(2013)
Proceedings of the 2013 international conference on Smart Health
, pp. 134-150
-
-
Liu, X.1
Chen, H.2
-
27
-
-
84863556111
-
Predicting adverse drug events from personal health messages
-
Chee BW, Berlin R, Schatz B. Predicting adverse drug events from personal health messages. AMIA Annu Symp Proc. 2011;2011:217-226.
-
(2011)
AMIA Annu Symp Proc.
, vol.2011
, pp. 217-226
-
-
Chee, B.W.1
Berlin, R.2
Schatz, B.3
-
28
-
-
79955778144
-
Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm
-
Wicks P, Vaughan TE, Massagli MP, et al. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat Biotechnol. 2011;29:411-414.
-
(2011)
Nat Biotechnol.
, vol.29
, pp. 411-414
-
-
Wicks, P.1
Vaughan, T.E.2
Massagli, M.P.3
-
29
-
-
84870462946
-
Social media mining for drug safety signal detection
-
New York, USA: ACM Press; October
-
Yang CC, Yang H, Jiang L, et al. Social media mining for drug safety signal detection. In: Proceedings of the 2012 international workshop on Smart health and wellbeing. New York, USA: ACM Press; October, 2012:33-40.
-
(2012)
Proceedings of the 2012 international workshop on Smart health and wellbeing
, pp. 33-40
-
-
Yang, C.C.1
Yang, H.2
Jiang, L.3
-
30
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
Press
-
Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Journal of biomedical informatics. 2014; In Press. doi:10.1016/j.jbi.2014.11.002.
-
(2014)
Journal of biomedical informatics
-
-
Sarker, A.1
Gonzalez, G.2
-
31
-
-
84879892778
-
Web-scale pharmacovigilance: listening to signals from the crowd
-
White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc. 2013;20:404-408.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, pp. 404-408
-
-
White, R.W.1
Tatonetti, N.P.2
Shah, N.H.3
-
32
-
-
76149120425
-
A side effect resource to capture phenotypic effects of drugs.
-
Kuhn M, Campillos M, Letunic I, et al. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343.
-
(2010)
Mol Syst Biol.
, vol.6
, pp. 343
-
-
Kuhn, M.1
Campillos, M.2
Letunic, I.3
-
33
-
-
84940388690
-
-
Accessed September
-
SIDER 2 - Side Effect Resource. http://sideeffects.embl.de/. Accessed September, 2014.
-
(2014)
SIDER 2 - Side Effect Resource
-
-
-
34
-
-
43049183213
-
Estimating consumer familiarity with health terminology: a contextbased approach
-
Zeng-Treitler Q, Goryachev S, Tse T, et al. Estimating consumer familiarity with health terminology: a contextbased approach. J Am Med Informatics Assoc. 2008;15: 349-356.
-
(2008)
J Am Med Informatics Assoc.
, vol.15
, pp. 349-356
-
-
Zeng-Treitler, Q.1
Goryachev, S.2
Tse, T.3
-
35
-
-
70349086122
-
MedDRA: an overview of the medical dictionary for regulatory activities
-
Mozzicato P. MedDRA: an overview of the medical dictionary for regulatory activities. Pharmaceut Med. 2009;23:65-75.
-
(2009)
Pharmaceut Med.
, vol.23
, pp. 65-75
-
-
Mozzicato, P.1
-
36
-
-
84905217429
-
Identifying adverse drug events from health social media: a case study on heart disease discussion
-
July
-
Liu X, Liu J, Chen H. Identifying adverse drug events from health social media: a case study on heart disease discussion. In: International Conference on Smart Health. July 2014:25-36.
-
(2014)
International Conference on Smart Health
, pp. 25-36
-
-
Liu, X.1
Liu, J.2
Chen, H.3
-
37
-
-
84865989881
-
Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports
-
Gurulingappa H, Rajput AM, Roberts A, et al. Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J Biomed Inform. 2012;45:885-892.
-
(2012)
J Biomed Inform.
, vol.45
, pp. 885-892
-
-
Gurulingappa, H.1
Rajput, A.M.2
Roberts, A.3
-
38
-
-
84874814633
-
Discovering consumer health expressions from consumer-contributed content
-
April
-
Jiang L, Yang C, Li J. Discovering consumer health expressions from consumer-contributed content. In: Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Washington, D.C., April 2013:164-174.
-
(2013)
Proceedings of International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Washington, D.C.
, pp. 164-174
-
-
Jiang, L.1
Yang, C.2
Li, J.3
-
39
-
-
84973587732
-
A coefficient of agreement for nominal scales
-
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37-46.
-
(1960)
Educ Psychol Meas.
, vol.20
, pp. 37-46
-
-
Cohen, J.1
-
40
-
-
18544372466
-
Understanding interobserver agreement: the kappa statistic
-
Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37:360-363.
-
(2005)
Fam Med.
, vol.37
, pp. 360-363
-
-
Viera, A.J.1
Garrett, J.M.2
-
42
-
-
40549140499
-
BANNER: an executable survey of advances in biomedical named entity recognition
-
Leaman R, Gonzalez G. BANNER: an executable survey of advances in biomedical named entity recognition. Pacific Symp Biocomput. 2008;13:652-663.
-
(2008)
Pacific Symp Biocomput.
, vol.13
, pp. 652-663
-
-
Leaman, R.1
Gonzalez, G.2
-
44
-
-
84940423733
-
-
Apache Lucene, Accessed November
-
Apache Lucene. http://lucene.apache.org/. Accessed November, 2014.
-
(2014)
-
-
-
47
-
-
84976702763
-
WordNet: a lexical database for English
-
Miller GA. WordNet: a lexical database for English. Commun ACM. 1995;38:39-41.
-
(1995)
Commun ACM.
, vol.38
, pp. 39-41
-
-
Miller, G.A.1
-
51
-
-
84940423734
-
-
Accessed June
-
word2vec. https://code.google.com/p/word2vec/. Accessed June, 2014.
-
(2014)
-
-
-
53
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
Scottsdale, Arizona, May
-
Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. In: Proceedings of International Conference on Learning Representations, Scottsdale, Arizona, May 2013.
-
(2013)
Proceedings of International Conference on Learning Representations
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
-
54
-
-
0035752429
-
Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program
-
November
-
Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proc AMIA Symp. November 2001:17-21.
-
(2001)
Proc AMIA Symp
, pp. 17-21
-
-
Aronson, A.R.1
-
56
-
-
84925545091
-
Unsupervised Gene Function Extraction using Semantic Vectors
-
Emadzadeh E, Nikfarjam A, Ginn R, et al. Unsupervised Gene Function Extraction using Semantic Vectors. Database. 2014; 2014 doi: 10.1093/database/bau084.
-
(2014)
Database
, vol.2014
-
-
Emadzadeh, E.1
Nikfarjam, A.2
Ginn, R.3
-
57
-
-
79953325924
-
GeneTUKit: a software for document-level gene normalization
-
Huang M, Liu J, Zhu X. GeneTUKit: a software for document-level gene normalization. Bioinformatics. 2011;27:1032-1033.
-
(2011)
Bioinformatics
, vol.27
, pp. 1032-1033
-
-
Huang, M.1
Liu, J.2
Zhu, X.3
-
58
-
-
84957069814
-
Text categorization with support vector machines: learning with many relevant features
-
Joachims T. Text categorization with support vector machines: learning with many relevant features. Mach Learn ECML-98. 1998;1398:137-142.
-
(1998)
Mach Learn ECML-98
, vol.1398
, pp. 137-142
-
-
Joachims, T.1
-
59
-
-
0002714543
-
Making large scale SVM learning practical
-
Schölkopf B, Burges C, Smola A, Cambridge, MA, MIT Press
-
Joachims T. Making large scale SVM learning practical. In: Schölkopf B, Burges C, Smola A. Advances in kernel methods - support vector learning. Cambridge, MA, MIT Press; 1999: 169-184.
-
(1999)
Advances in kernel methods - support vector learning.
, pp. 169-184
-
-
Joachims, T.1
-
60
-
-
33644946285
-
Various criteria in the evaluation of biomedical named entity recognition
-
Tsai RT-H, Wu S-H, Chou W-C, et al. Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics. 2006;7:92.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 92
-
-
Tsai, R.T.-H.1
Wu, S.-H.2
Chou, W.-C.3
-
61
-
-
0347606818
-
More accurate tests for the statistical significance of result differences
-
Saarbrueken, Germany, July
-
Yeh A. More accurate tests for the statistical significance of result differences. In: Proceedings of the 18th Conference on Computational linguistics. Saarbrueken, Germany, July 2000:947-953.
-
(2000)
Proceedings of the 18th Conference on Computational linguistics
, pp. 947-953
-
-
Yeh, A.1
|