메뉴 건너뛰기




Volumn 24, Issue 3, 2017, Pages 596-606

De-identification of patient notes with recurrent neural networks

Author keywords

De identi cation; Medical language processing; Neural networks

Indexed keywords

CONTROLLED STUDY; DATA BASE; ELECTRONIC HEALTH RECORD; ERROR; HUMAN; LANGUAGE PROCESSING; MODEL; NERVOUS SYSTEM; RECALL; SCIENTIST; ANONYMIZATION; ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; INFORMATION PROCESSING;

EID: 85019722825     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw156     Document Type: Article
Times cited : (327)

References (58)
  • 1
    • 84884266665 scopus 로고    scopus 로고
    • Some hospitals are falling behind in meeting "meaningful use" criteria and could be vulnerable to penalties in 2015
    • DesRoches CM, Worzala C, Bates S. Some hospitals are falling behind in meeting "meaningful use" criteria and could be vulnerable to penalties in 2015. Health Affairs. 2013;32:1355-1360.
    • Health Affairs. , vol.2013 , Issue.32 , pp. 1355-1360
    • DesRoches, C.M.1    Worzala, C.2    Bates, S.3
  • 2
    • 84874005056 scopus 로고    scopus 로고
    • Early results of the meaningful use program for electronic health records
    • Wright A, Henkin S, Feblowitz, et al. Early results of the meaningful use program for electronic health records. New Engl J Med. 2013;368:779-780.
    • (2013) New Engl J Med. , vol.368 , pp. 779-780
    • Wright, A.1    Henkin, S.2    Feblowitz, F.3
  • 3
    • 0037077422 scopus 로고    scopus 로고
    • Office for Civil Rights H. Standards for privacy of individually identifiable health information. Final rule. Federal Register. 2002;67:53181.
    • (2002) Federal Register , vol.67
  • 5
    • 33847111256 scopus 로고    scopus 로고
    • De-identification algorithm for free-text nursing notes
    • Douglass M, Clifford G, Reisner A, et al. De-identification algorithm for free-text nursing notes. Comput Cardiol. 2005:331-334.
    • (2005) Comput Cardiol. , pp. 331-334
    • Douglass, M.1    Clifford, G.2    Reisner, A.3
  • 6
    • 28144457659 scopus 로고    scopus 로고
    • Computer-assisted deidentification of free text in the MIMIC II database
    • Douglas M, Clifford G, Reisner A, et al. Computer-assisted deidentification of free text in the MIMIC II database. Comput Cardiol. 2004:341-344.
    • (2004) Comput Cardiol. , pp. 341-344
    • Douglas, M.1    Clifford, G.2    Reisner, A.3
  • 7
    • 14844283547 scopus 로고    scopus 로고
    • Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals
    • Goldberger AL, Amaral LA, Glass L, et al. Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation. 2000;101:e215-e220.
    • (2000) Circulation. , vol.101 , pp. e215-e220
    • Goldberger, A.L.1    Amaral, L.A.2    Glass, L.3
  • 8
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database
    • Saeed M, Villarroel M, Reisner AT, et al. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): A public-access intensive care unit database. Crit Care Med. 2011;39:952.
    • (2011) Crit Care Med , vol.39 , pp. 952
    • Saeed, M.1    Villarroel, M.2    Reisner, A.T.3
  • 9
    • 84871949206 scopus 로고    scopus 로고
    • Pre-annotating clinical notes and clinical trial announcements for gold standard corpus development: Evaluating the impact on annotation speed and potential bias
    • Lingren T, Deleger L, Molnar K, et al. Pre-annotating clinical notes and clinical trial announcements for gold standard corpus development: Evaluating the impact on annotation speed and potential bias. Proc 2012 IEEE 2nd Conf Healthc Informatics, Imaging Syst Biol HISB 2012. 2012:108. doi:10.1109/HISB.2012.33.
    • (2012) Proc 2012 IEEE 2nd Conf Healthc Informatics, Imaging Syst Biol HISB , vol.2012 , pp. 108
    • Lingren, T.1    Deleger, L.2    Molnar, K.3
  • 10
    • 84905184800 scopus 로고    scopus 로고
    • Evaluating the effects of machine pre-annotation and an interactive annotation interface on manual de-identification of clinical text
    • South BR, Mowery D, Suo Y, et al. Evaluating the effects of machine pre-annotation and an interactive annotation interface on manual de-identification of clinical text. J Biomed Inform. 2014;50: 162-172.
    • (2014) J Biomed Inform. , vol.50 , pp. 162-172
    • South, B.R.1    Mowery, D.2    Suo, Y.3
  • 11
    • 84881374654 scopus 로고    scopus 로고
    • Bootstrapping a de-identification system for narrative patient records: Cost-performance tradeoffs
    • Hanauer D, Aberdeen J, Bayer S, et al. Bootstrapping a de-identification system for narrative patient records: Cost-performance tradeoffs. Int J Med Inform. 2013;82(9):821-831.
    • (2013) Int J Med Inform. , vol.82 , Issue.9 , pp. 821-831
    • Hanauer, D.1    Aberdeen, J.2    Bayer, S.3
  • 12
    • 84906322293 scopus 로고    scopus 로고
    • Assisted annotation of medical free text using RapTAT
    • Gobbel GT, Garvin J, Reeves R, et al. Assisted annotation of medical free text using RapTAT. J Am Med Inform Assoc. 2014;21(5):833-841.
    • (2014) J Am Med Inform Assoc. , vol.21 , Issue.5 , pp. 833-841
    • Gobbel, G.T.1    Garvin, J.2    Reeves, R.3
  • 13
    • 84904336038 scopus 로고    scopus 로고
    • Rule-based information extraction is dead! Long live rule-based information extraction systems
    • Chiticariu L, Li Y, Reiss FR. Rule-based information extraction is dead! Long live rule-based information extraction systems! EMNLP. 2013:827-832.
    • (2013) EMNLP , pp. 827-832
    • Chiticariu, L.1    Li, Y.2    Reiss, F.R.3
  • 14
    • 0038580808 scopus 로고    scopus 로고
    • Concept-match medical data scrubbing: how pathology text can be used in research
    • Berman JJ. Concept-match medical data scrubbing: how pathology text can be used in research. Arch Pathol Lab Med. 2003;127:680-686.
    • (2003) Arch Pathol Lab Med , vol.127 , pp. 680-686
    • Berman, J.J.1
  • 15
    • 33748740816 scopus 로고    scopus 로고
    • Development and evaluation of an open source software tool for deidentification of pathology reports
    • Beckwith BA, Mahaadevan R, Balis UJ, et al. Development and evaluation of an open source software tool for deidentification of pathology reports. BMC Med Inform Decis Mak. 2006;6:1.
    • (2006) BMC Med Inform Decis Mak. , vol.6 , pp. 1
    • Beckwith, B.A.1    Mahaadevan, R.2    Balis, U.J.3
  • 16
    • 33745914027 scopus 로고    scopus 로고
    • Algorithmic de-identification of VA medical exam text for HIPAA privacy compliance: preliminary findings
    • Fielstein E, Brown S, Speroff T. Algorithmic de-identification of VA medical exam text for HIPAA privacy compliance: preliminary findings. Medinfo. 2004;1590.
    • (2004) Medinfo. , pp. 1590
    • Fielstein, E.1    Brown, S.2    Speroff, T.3
  • 17
    • 49849102836 scopus 로고    scopus 로고
    • A software tool for removing patient identifying information from clinical documents
    • Friedlin FJ, McDonald CJ. A software tool for removing patient identifying information from clinical documents. J Am Med Inform Assoc. 2008;15:601-610.
    • (2008) J Am Med Inform Assoc. , vol.15 , pp. 601-610
    • Friedlin, F.J.1    McDonald, C.J.2
  • 18
    • 0942266011 scopus 로고    scopus 로고
    • Evaluation of a deidentification (De-Id) software engine to share pathology reports and clinical documents for research
    • Gupta D, Saul M, Gilbertson J. Evaluation of a deidentification (De-Id) software engine to share pathology reports and clinical documents for research. Am J Clin Pathol. 2004;121:176-186.
    • (2004) Am J Clin Pathol. , vol.121 , pp. 176-186
    • Gupta, D.1    Saul, M.2    Gilbertson, J.3
  • 19
    • 57149148103 scopus 로고    scopus 로고
    • Repurposing the clinical record: Can an existing natural language processing system de-identify clinical notes?
    • Morrison FP, Li L, Lai AM, et al. Repurposing the clinical record: Can an existing natural language processing system de-identify clinical notes? J Am Med Inform Assoc. 2009;16:37-39.
    • (2009) J Am Med Inform Assoc , vol.16 , pp. 37-39
    • Morrison, F.P.1    Li, L.2    Lai, A.M.3
  • 20
    • 0034575782 scopus 로고    scopus 로고
    • Medical document anonymization with a semantic lexicon
    • Ruch P, Baud RH, Rassinoux A-M, et al. Medical document anonymization with a semantic lexicon. Proc AMIA Symp. 2000:729-733.
    • (2000) Proc AMIA Symp. , pp. 729-733
    • Ruch, P.1    Baud, R.H.2    Rassinoux, A.-M.3
  • 21
    • 0030333205 scopus 로고    scopus 로고
    • Replacing personally identifying information in medical records, the Scrub system
    • Sweeney L. Replacing personally identifying information in medical records, the Scrub system. Proc AMIA Annual Fall Symp. 1996:333-337.
    • (1996) Proc AMIA Annual Fall Symp. , pp. 333-337
    • Sweeney, L.1
  • 22
    • 0036368242 scopus 로고    scopus 로고
    • A successful technique for removing names in pathology reports using an augmented search and replace method
    • Thomas SM, Mamlin B, Schadow G, et al. A successful technique for removing names in pathology reports using an augmented search and replace method. Proc AMIA Symp. 2002:777-781.
    • (2002) Proc AMIA Symp. , pp. 777-781
    • Thomas, S.M.1    Mamlin, B.2    Schadow, G.3
  • 23
    • 33750685685 scopus 로고    scopus 로고
    • A multilingual named entity recognition system using boosting and c4.5 decision tree learning algorithms
    • Szarvas G, Farkas R, Kocsor A. A multilingual named entity recognition system using boosting and c4.5 decision tree learning algorithms. Discovery Sci. 2006;4265:267-278.
    • (2006) Discovery Sci. , vol.4265 , pp. 267-278
    • Szarvas, G.1    Farkas, R.2    Kocsor, A.3
  • 27
    • 78650217579 scopus 로고    scopus 로고
    • The MITRE Identification Scrubber Toolkit: Design, training, and assessment
    • Aberdeen J, Bayer S, Yeniterzi R, et al. The MITRE Identification Scrubber Toolkit: Design, training, and assessment. Int J Med Inform. 2010;79:849-859.
    • (2010) Int J Med Inform. , vol.79 , pp. 849-859
    • Aberdeen, J.1    Bayer, S.2    Yeniterzi, R.3
  • 28
    • 77955080124 scopus 로고    scopus 로고
    • Automatic de-identification of textual documents in the electronic health record: a review of recent research
    • Meystre SM, Friedlin FJ, South BR, et al. Automatic de-identification of textual documents in the electronic health record: a review of recent research. BMC Med Res Methodol. 2010;10:1.
    • (2010) BMC Med Res Methodol. , vol.10 , pp. 1
    • Meystre, S.M.1    Friedlin, F.J.2    South, B.R.3
  • 29
    • 84940054677 scopus 로고    scopus 로고
    • Automated systems for the deidentification of longitudinal clinical narratives: overview of 2014 i2b2/UTHealth shared task track 1
    • Stubbs A, Kotfila C, Uzuner O. Automated systems for the deidentification of longitudinal clinical narratives: overview of 2014 i2b2/UTHealth shared task track 1. J Biomed Inform. 2015;58:S11-S19.
    • (2015) J Biomed Inform , vol.58 , pp. S11-S19
    • Stubbs, A.1    Kotfila, C.2    Uzuner, O.3
  • 30
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. Adv Neural Inf Process Syst, 2013:3111-3119.
    • (2013) Adv Neural Inf Process Syst, , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3
  • 31
    • 80053558787 scopus 로고    scopus 로고
    • Natural language processing (almost) from scratch
    • Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch. J Mach Learning Res. 2011;12:2493-2537.
    • (2011) J Mach Learning Res. , vol.12 , pp. 2493-2537
    • Collobert, R.1    Weston, J.2    Bottou, L.3
  • 41
    • 84906922062 scopus 로고    scopus 로고
    • Recurrent neural networks for word alignment model
    • Tamura A, Watanabe T, Sumita E. Recurrent neural networks for word alignment model. ACL (1). 2014;52:1470-1480.
    • (2014) ACL (1). , vol.52 , pp. 1470-1480
    • Tamura, A.1    Watanabe, T.2    Sumita, E.3
  • 42
    • 84961291354 scopus 로고    scopus 로고
    • Translation modeling with bidirectional recurrent neural networks
    • Sundermeyer M, Alkhouli T, Wuebker J, et al. Translation modeling with bidirectional recurrent neural networks. EMNLP. 2014:14-25.
    • (2014) EMNLP. , pp. 14-25
    • Sundermeyer, M.1    Alkhouli, T.2    Wuebker, J.3
  • 46
    • 84952008061 scopus 로고    scopus 로고
    • Named entity recognition in Chinese clinical text using deep neural network
    • Wu Y, Jiang M, Lei J, et al. Named entity recognition in Chinese clinical text using deep neural network. Stud Health Technol Inform. 2015;216:624-628.
    • (2015) Stud Health Technol Inform. , vol.216 , pp. 624-628
    • Wu, Y.1    Jiang, M.2    Lei, J.3
  • 47
    • 85019682511 scopus 로고    scopus 로고
    • UTA DLNLP at SemEval-2016 Task 12: deep learning based natural language processing system for clinical information identification from clinical notes and pathology reports
    • San Diego, CA: Association for Computational Linguistics
    • Li P, Huang H. UTA DLNLP at SemEval-2016 Task 12: deep learning based natural language processing system for clinical information identification from clinical notes and pathology reports. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016).San Diego, CA: Association for Computational Linguistics; 2016;10:1268-1273.
    • (2016) Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) , vol.10 , pp. 1268-1273
    • Li, P.1    Huang, H.2
  • 48
    • 85019682515 scopus 로고    scopus 로고
    • Brundlefly at SemEval-2016 Task 12: recurrent neural networks vs. joint inference for clinical temporal information extraction
    • San Diego, CA: Association for Computational Linguistics
    • Fries JA. Brundlefly at SemEval-2016 Task 12: recurrent neural networks vs. joint inference for clinical temporal information extraction. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). San Diego, CA: Association for Computational Linguistics; 2016:1274-1279.
    • (2016) Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) , pp. 1274-1279
    • Fries, J.A.1
  • 49
    • 84976303340 scopus 로고    scopus 로고
    • DeepDive: a data management system for automatic knowledge base construction
    • Zhang C. DeepDive: a data management system for automatic knowledge base construction. Thesis. 2015;53:1689-1699.
    • (2015) Thesis , vol.53 , pp. 1689-1699
    • Zhang, C.1
  • 51
    • 84938717641 scopus 로고    scopus 로고
    • Automatic detection of protected health information from clinic narratives
    • Yang H, Garibaldi JM. Automatic detection of protected health information from clinic narratives. J Biomed Inform. 2015;58:S30-S38.
    • (2015) J Biomed Inform. , vol.58 , pp. S30-S38
    • Yang, H.1    Garibaldi, J.M.2
  • 52
    • 85019745734 scopus 로고    scopus 로고
    • ManTIME: temporal ex pression identification and normalization in the TempEval-3 challenge
    • Filannino M, Brown G, Nenadic G. ManTIME: temporal expression identification and normalization in the TempEval-3 challenge. CoRR. 2013;abs/1304.7(2005):5.
    • (2013) CoRR. , vol.7 , Issue.2005 , pp. 5
    • Filannino, M.1    Brown, G.2    Nenadic, G.3
  • 55
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • Mikolov T, Yih W-t, Zweig G. Linguistic regularities in continuous space word representations. HLT-NAACL. 2013;13:746-751.
    • (2013) HLT-NAACL. , vol.13 , pp. 746-751
    • Mikolov, T.1    W-t, Y.2    Zweig, G.3
  • 56


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.