메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 1069-1109

Differentially private empirical risk minimization

Author keywords

Classification; Empirical risk minimization; Logistic regression; Optimization; Privacy; Support vector machines

Indexed keywords

BENCHMARK DATA; CLASSIFICATION; DIFFERENTIABILITY; DIFFERENTIAL PRIVACIES; EMPIRICAL RISK MINIMIZATION; FINANCIAL RECORDS; GENERALIZATION BOUND; LEARNING PERFORMANCE; LOGISTIC REGRESSION; LOGISTIC REGRESSIONS; MACHINE LEARNING ALGORITHMS; NONLINEAR KERNELS; OBJECTIVE FUNCTIONS; OUTPUT PERTURBATIONS; PERSONAL DATA; PRIVACY; PRIVACY PRESERVING; REGULARIZER; THEORETICAL RESULT; TRAINING PROCESS;

EID: 79955858775     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (1521)

References (50)
  • 1
    • 0041783510 scopus 로고    scopus 로고
    • Privacy-preserving data mining
    • R. Agrawal and R. Srikant. Privacy-preserving data mining. SIGMOD Record, 29(2): 439-450, 2000.
    • (2000) SIGMOD Record , vol.29 , Issue.2 , pp. 439-450
    • Agrawal, R.1    Srikant, R.2
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion and D.J. Newman. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, 2007. URL http://www. ics.uci.edu/~mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 7
    • 0004302610 scopus 로고
    • A Wiley-Interscience publication. Wiley, New York [u.a.], 3. ed edition. ISBN 0471007102
    • P Billingsley. Probability and measure. A Wiley-Interscience publication. Wiley, New York [u.a.], 3. ed edition, 1995. ISBN 0471007102.
    • (1995) Probability and Measure
    • Billingsley, P.1
  • 8
    • 57049136138 scopus 로고    scopus 로고
    • A learning theory approach to non-interactive database privacy
    • R. E. Ladner and C. Dwork, editors. ACM. ISBN 978-1-60558-047-0
    • A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In R. E. Ladner and C. Dwork, editors, Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), pages 609-618. ACM, 2008. ISBN 978-1-60558-047-0.
    • (2008) Proceedings of the 40th ACM Symposium on Theory of Computing (STOC) , pp. 609-618
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 10
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • May
    • O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155-1178, May 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 21
    • 0003704318 scopus 로고    scopus 로고
    • University of California, Irvine, Department of Information and Computer Science
    • S. Hettich and S.D. Bay. The UCI KDD Archive. University of California, Irvine, Department of Information and Computer Science, 1999. URL http://kdd.ics.uci.edu.
    • (1999) The UCI KDD Archive
    • Hettich, S.1    Bay, S.D.2
  • 26
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • G.S. Kimeldorfand G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41:495-502, 1970.
    • (1970) Annals of Mathematical Statistics , vol.41 , pp. 495-502
    • Kimeldorfand, G.S.1    Wahba, G.2
  • 32
    • 50249142450 scopus 로고    scopus 로고
    • Robust de-anonymization of large sparse datasets (how to break anonymity of the netflix prize dataset)
    • A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets (how to break anonymity of the netflix prize dataset). In Proceedings of 29th IEEE Symposium on Security and Privacy, pages 111-125, 2008.
    • (2008) Proceedings of 29th, IEEE Symposium on Security and Privacy , pp. 111-125
    • Narayanan, A.1    Shmatikov, V.2
  • 33
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • DOI 10.1145/1250790.1250803, STOC'07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th ACM Symposium on the Theory of Computing (STOC), pages 75-84. ACM, 2007. ISBN 978-1-59593-631-8. (Pubitemid 47630723)
    • (2007) Proceedings of the Annual ACM Symposium on Theory of Computing , pp. 75-84
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 43
    • 0031150446 scopus 로고    scopus 로고
    • Weaving technology and policy together to maintain confidentiality
    • L. Sweeney. Weaving technology and policy together to maintain conidentiality. Journal of Law, Medicine and Ethics, 25:98-110, 1997. (Pubitemid 127448006)
    • (1997) Journal of Law, Medicine and Ethics , vol.25 , Issue.2-3 , pp. 98-110
    • Sweeney, L.1
  • 46


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.