메뉴 건너뛰기




Volumn 144, Issue , 2017, Pages 97-104

A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images

Author keywords

Computer aided detection (CAD); Convolution neural network (CNN); Deep learning; Segmentation of adipose tissue; Subcutaneous fat area (SFA); Visceral fat area (VFA)

Indexed keywords

COMPUTER AIDED DIAGNOSIS; COMPUTER AIDED INSTRUCTION; COMPUTER NETWORKS; CONVOLUTION; DEEP LEARNING; DIAGNOSIS; IMAGE SEGMENTATION; NEURAL NETWORKS; PIXELS; RISK ASSESSMENT; STATISTICAL TESTS; TISSUE;

EID: 85015984007     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2017.03.017     Document Type: Article
Times cited : (102)

References (35)
  • 1
    • 84896690513 scopus 로고    scopus 로고
    • Prevalence of childhood and adult obesity in the United States, 2011-2012
    • [1] Ogden, C.L., Carroll, M.D., Kit, B.K., Flegal, K.M., Prevalence of childhood and adult obesity in the United States, 2011-2012. Jama 311 (2014), 806–814.
    • (2014) Jama , vol.311 , pp. 806-814
    • Ogden, C.L.1    Carroll, M.D.2    Kit, B.K.3    Flegal, K.M.4
  • 3
    • 0035112424 scopus 로고    scopus 로고
    • Current status of medical and surgical therapy for obesity
    • [3] Mun, E.C., Blackburn, G.L., Matthews, J.B., Current status of medical and surgical therapy for obesity. Gastroenterology 120 (2001), 669–681.
    • (2001) Gastroenterology , vol.120 , pp. 669-681
    • Mun, E.C.1    Blackburn, G.L.2    Matthews, J.B.3
  • 5
    • 84885357878 scopus 로고    scopus 로고
    • Computer-aided assessment of regional abdominal fat with food residue removal in CT
    • [5] Makrogiannis, S., Caturegli, G., Davatzikos, C., Ferrucci, L., Computer-aided assessment of regional abdominal fat with food residue removal in CT. Acad. Radiol. 20 (2013), 1413–1421.
    • (2013) Acad. Radiol. , vol.20 , pp. 1413-1421
    • Makrogiannis, S.1    Caturegli, G.2    Davatzikos, C.3    Ferrucci, L.4
  • 6
    • 77749306533 scopus 로고    scopus 로고
    • Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer
    • [6] Guiu, B., Petit, J.M., Bonnetain, F., Ladoire, S., Guiu, S., Cercueil, J.-P., Krausé, D., Hillon, P., Borg, C., Chauffert, B., Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59 (2010), 341–347.
    • (2010) Gut , vol.59 , pp. 341-347
    • Guiu, B.1    Petit, J.M.2    Bonnetain, F.3    Ladoire, S.4    Guiu, S.5    Cercueil, J.-P.6    Krausé, D.7    Hillon, P.8    Borg, C.9    Chauffert, B.10
  • 8
    • 84973464774 scopus 로고    scopus 로고
    • Quantitative measurement of adiposity using CT images to predict the benefit of bevacizumab-based chemotherapy in epithelial ovarian cancer patients
    • [8] Wang, Y., Thai, T., Moore, K., Ding, K., Mcmeekin, S., Liu, H., Zheng, B., Quantitative measurement of adiposity using CT images to predict the benefit of bevacizumab-based chemotherapy in epithelial ovarian cancer patients. Oncol. Lett. 12 (2016), 680–686.
    • (2016) Oncol. Lett. , vol.12 , pp. 680-686
    • Wang, Y.1    Thai, T.2    Moore, K.3    Ding, K.4    Mcmeekin, S.5    Liu, H.6    Zheng, B.7
  • 10
    • 84984680092 scopus 로고    scopus 로고
    • Applying a computer-aided scheme to detect a new radiographic image marker for prediction of chemotherapy outcome
    • [10] Wang, Y., Qiu, Y., Thai, T., Moore, K., Liu, H., Zheng, B., Applying a computer-aided scheme to detect a new radiographic image marker for prediction of chemotherapy outcome. BMC Med. Imag., 16, 2016, 52, 10.1186/s12880-016-157-5.
    • (2016) BMC Med. Imag. , vol.16 , pp. 52
    • Wang, Y.1    Qiu, Y.2    Thai, T.3    Moore, K.4    Liu, H.5    Zheng, B.6
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [13] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • [14] Simard, P.Y., Steinkraus, D., Platt, J.C., Best practices for convolutional neural networks applied to visual document analysis. IEEE, 2003, 958.
    • (2003) IEEE , pp. 958
    • Simard, P.Y.1    Steinkraus, D.2    Platt, J.C.3
  • 15
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • [15] Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 16
    • 84892142922 scopus 로고    scopus 로고
    • Computer science: the learning machines
    • [16] Jones, N., Computer science: the learning machines. Nature 505 (2014), 146–148.
    • (2014) Nature , vol.505 , pp. 146-148
    • Jones, N.1
  • 18
    • 84875328950 scopus 로고    scopus 로고
    • Segmentation of bone structure in X-ray images using convolutional neural network
    • [18] Cernazanu-Glavan, C., Holban, S., Segmentation of bone structure in X-ray images using convolutional neural network. Adv. Electr. Comput. Eng 13 (2013), 87–94.
    • (2013) Adv. Electr. Comput. Eng , vol.13 , pp. 87-94
    • Cernazanu-Glavan, C.1    Holban, S.2
  • 23
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • [23] Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M., Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35 (2016), 1285–1298.
    • (2016) IEEE Trans. Med. Imag. , vol.35 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3    Lu, L.4    Xu, Z.5    Nogues, I.6    Yao, J.7    Mollura, D.8    Summers, R.M.9
  • 25
    • 67149108708 scopus 로고    scopus 로고
    • Automated segmentation of muscle and adipose tissue on CT images for human body composition analysis, SPIE medical imaging
    • 72610K-72610K-72618
    • [25] Chung, H., Cobzas, D., Birdsell, L., Lieffers, J., Baracos, V., Automated segmentation of muscle and adipose tissue on CT images for human body composition analysis, SPIE medical imaging. Int. Soc. Opt. Photon., 2009 72610K-72610K-72618.
    • (2009) Int. Soc. Opt. Photon.
    • Chung, H.1    Cobzas, D.2    Birdsell, L.3    Lieffers, J.4    Baracos, V.5
  • 26
    • 85016045158 scopus 로고    scopus 로고
    • Context Driven Label Fusion for segmentation of Subcutaneous and Visceral Fat in CT Volumes
    • arXiv preprint arXiv:1512.04958
    • [26] Hussein, S., Green, A., Watane, A., Papadakis, G., Osman, M., Bagci, U., Context Driven Label Fusion for segmentation of Subcutaneous and Visceral Fat in CT Volumes. 2015 arXiv preprint arXiv:1512.04958.
    • (2015)
    • Hussein, S.1    Green, A.2    Watane, A.3    Papadakis, G.4    Osman, M.5    Bagci, U.6
  • 27
    • 84884323259 scopus 로고    scopus 로고
    • Body fat assessment method using CT images with separation mask algorithm
    • [27] Kim, Y.J., Lee, S.H., Kim, T.Y., Park, J.Y., Choi, S.H., Kim, K.G., Body fat assessment method using CT images with separation mask algorithm. J. Digit. Imag. 26 (2013), 155–162.
    • (2013) J. Digit. Imag. , vol.26 , pp. 155-162
    • Kim, Y.J.1    Lee, S.H.2    Kim, T.Y.3    Park, J.Y.4    Choi, S.H.5    Kim, K.G.6
  • 28
    • 79955770294 scopus 로고    scopus 로고
    • Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans, SPIE medical imaging
    • 79632Q-79632Q-79612
    • [28] Mensink, S.D., Spliethoff, J.W., Belder, R., Klaase, J.M., Bezooijen, R., Slump, C.H., Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans, SPIE medical imaging. Int. Soc. Opt. Photon., 2011 79632Q-79632Q-79612.
    • (2011) Int. Soc. Opt. Photon.
    • Mensink, S.D.1    Spliethoff, J.W.2    Belder, R.3    Klaase, J.M.4    Bezooijen, R.5    Slump, C.H.6
  • 31
    • 0242331172 scopus 로고    scopus 로고
    • Automated lung segmentation in X-ray computed tomography: development and evaluation of a heuristic threshold-based scheme 1
    • [31] Leader, J.K., Zheng, B., Rogers, R.M., Sciurba, F.C., Perez, A., Chapman, B.E., Patel, S., Fuhrman, C.R., Gur, D., Automated lung segmentation in X-ray computed tomography: development and evaluation of a heuristic threshold-based scheme 1. Acad. Radiol. 10 (2003), 1224–1236.
    • (2003) Acad. Radiol. , vol.10 , pp. 1224-1236
    • Leader, J.K.1    Zheng, B.2    Rogers, R.M.3    Sciurba, F.C.4    Perez, A.5    Chapman, B.E.6    Patel, S.7    Fuhrman, C.R.8    Gur, D.9
  • 33
    • 84945126751 scopus 로고    scopus 로고
    • Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy
    • [33] Aghaei, F., Tan, M., Hollingsworth, A.B., Qian, W., Liu, H., Zheng, B., Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy. Med. Phys. 42 (2015), 6520–6528.
    • (2015) Med. Phys. , vol.42 , pp. 6520-6528
    • Aghaei, F.1    Tan, M.2    Hollingsworth, A.B.3    Qian, W.4    Liu, H.5    Zheng, B.6
  • 34
    • 84966930831 scopus 로고    scopus 로고
    • Fusion of quantitative image features and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients
    • [34] Emaminejad, N., Qian, W., Guan, Y., Tan, M., Qiu, Y., Liu, H., Zheng, B., Fusion of quantitative image features and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients. IEEE. Trans. Biomed. Eng. 63 (2016), 1034–1043.
    • (2016) IEEE. Trans. Biomed. Eng. , vol.63 , pp. 1034-1043
    • Emaminejad, N.1    Qian, W.2    Guan, Y.3    Tan, M.4    Qiu, Y.5    Liu, H.6    Zheng, B.7
  • 35
    • 84986005695 scopus 로고    scopus 로고
    • Early prediction of clinical benefit of treating ovarian cancer using quantitative CT image feature analysis
    • [35] Qiu, Y., Tan, M., McMeekin, S., Thai, T., Ding, K., Moore, K., Liu, H., Zheng, B., Early prediction of clinical benefit of treating ovarian cancer using quantitative CT image feature analysis. Acta. Radiol. 57 (2016), 1149–1155.
    • (2016) Acta. Radiol. , vol.57 , pp. 1149-1155
    • Qiu, Y.1    Tan, M.2    McMeekin, S.3    Thai, T.4    Ding, K.5    Moore, K.6    Liu, H.7    Zheng, B.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.