메뉴 건너뛰기




Volumn 403, Issue , 2017, Pages 21-27

Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma

Author keywords

Imaging; Machine learning; Nasopharyngeal carcinoma; Radiomics

Indexed keywords

BIOLOGICAL MARKER;

EID: 85021176346     PISSN: 03043835     EISSN: 18727980     Source Type: Journal    
DOI: 10.1016/j.canlet.2017.06.004     Document Type: Article
Times cited : (216)

References (32)
  • 3
    • 84955604605 scopus 로고    scopus 로고
    • Radiomics: images are more than pictures, they are data
    • Gillies, R.J., Kinahan, P.E., Hricak, H., Radiomics: images are more than pictures, they are data. Radiology 278 (2016), 563–577.
    • (2016) Radiology , vol.278 , pp. 563-577
    • Gillies, R.J.1    Kinahan, P.E.2    Hricak, H.3
  • 4
    • 84988511917 scopus 로고    scopus 로고
    • Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC
    • Aerts, H.J., Grossmann, P., Tan, Y., Oxnard, G.G., Rizvi, N., Schwartz, L.H., et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci. Rep., 6, 2016, 33860.
    • (2016) Sci. Rep. , vol.6 , pp. 33860
    • Aerts, H.J.1    Grossmann, P.2    Tan, Y.3    Oxnard, G.G.4    Rizvi, N.5    Schwartz, L.H.6
  • 5
    • 85002169355 scopus 로고    scopus 로고
    • Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging
    • Sala, E., Mema, E., Himoto, Y., Veeraraghavan, H., Brenton, J.D., Snyder, A., et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72 (2017), 3–10.
    • (2017) Clin. Radiol. , vol.72 , pp. 3-10
    • Sala, E.1    Mema, E.2    Himoto, Y.3    Veeraraghavan, H.4    Brenton, J.D.5    Snyder, A.6
  • 6
    • 84936085910 scopus 로고    scopus 로고
    • A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities
    • Vallieres, M., Freeman, C.R., Skamene, S.R., El, N.I., A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60 (2015), 5471–5496.
    • (2015) Phys. Med. Biol. , vol.60 , pp. 5471-5496
    • Vallieres, M.1    Freeman, C.R.2    Skamene, S.R.3    El, N.I.4
  • 7
    • 85054102101 scopus 로고    scopus 로고
    • Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set
    • Li, H., Zhu, Y., Burnside, E.S., Huang, E., Drukker, K., Hoadley, K.A., et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer, 2, 2016.
    • (2016) NPJ Breast Cancer , vol.2
    • Li, H.1    Zhu, Y.2    Burnside, E.S.3    Huang, E.4    Drukker, K.5    Hoadley, K.A.6
  • 8
    • 84971500987 scopus 로고    scopus 로고
    • The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer
    • Liang, C., Huang, Y., He, L., Chen, X., Ma, Z., Dong, D., et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget 7 (2016), 31401–31412.
    • (2016) Oncotarget , vol.7 , pp. 31401-31412
    • Liang, C.1    Huang, Y.2    He, L.3    Chen, X.4    Ma, Z.5    Dong, D.6
  • 9
    • 85006922665 scopus 로고    scopus 로고
    • Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma
    • [Epub ahead of print]
    • Yu, J., Shi, Z., Lian, Y., Li, Z., Liu, T., Gao, Y., et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur. Radiol., 2016, 10.1007/s00330-016-4653-3 [Epub ahead of print].
    • (2016) Eur. Radiol.
    • Yu, J.1    Shi, Z.2    Lian, Y.3    Li, Z.4    Liu, T.5    Gao, Y.6
  • 10
    • 84981194419 scopus 로고    scopus 로고
    • Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma
    • Grossmann, P., Gutman, D.A., Dunn, W.J., Holder, C.A., Aerts, H.J., Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer, 16, 2016, 611.
    • (2016) BMC Cancer , vol.16 , pp. 611
    • Grossmann, P.1    Gutman, D.A.2    Dunn, W.J.3    Holder, C.A.4    Aerts, H.J.5
  • 11
    • 85084513645 scopus 로고    scopus 로고
    • Defining clinical response criteria and early response criteria for precision oncology: current state-of-the-art and future perspectives
    • Subbiah, V., Chuang, H.H., Gambhire, D., Kairemo, K., Defining clinical response criteria and early response criteria for precision oncology: current state-of-the-art and future perspectives. Diagn. (Basel), 7, 2017.
    • (2017) Diagn. (Basel) , vol.7
    • Subbiah, V.1    Chuang, H.H.2    Gambhire, D.3    Kairemo, K.4
  • 12
    • 84994560182 scopus 로고    scopus 로고
    • Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI
    • Nie, K., Shi, L., Chen, Q., Hu, X., Jabbour, S.K., Yue, N., et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin. Cancer Res. 22 (2016), 5256–5264.
    • (2016) Clin. Cancer Res. , vol.22 , pp. 5256-5264
    • Nie, K.1    Shi, L.2    Chen, Q.3    Hu, X.4    Jabbour, S.K.5    Yue, N.6
  • 15
    • 84939498419 scopus 로고    scopus 로고
    • Machine learning methods for quantitative radiomic biomarkers
    • Parmar, C., Grossmann, P., Bussink, J., Lambin, P., Aerts, H.J., Machine learning methods for quantitative radiomic biomarkers. Sci. Rep., 5, 2015, 13087.
    • (2015) Sci. Rep. , vol.5 , pp. 13087
    • Parmar, C.1    Grossmann, P.2    Bussink, J.3    Lambin, P.4    Aerts, H.J.5
  • 16
    • 85009373564 scopus 로고    scopus 로고
    • Radiomic phenotyping in brain cancer to unravel hidden information in medical images
    • Abrol, S., Kotrotsou, A., Salem, A., Zinn, P.O., Colen, R.R., Radiomic phenotyping in brain cancer to unravel hidden information in medical images. Top. Magn. Reson Imaging 26 (2017), 43–53.
    • (2017) Top. Magn. Reson Imaging , vol.26 , pp. 43-53
    • Abrol, S.1    Kotrotsou, A.2    Salem, A.3    Zinn, P.O.4    Colen, R.R.5
  • 17
    • 85021117855 scopus 로고    scopus 로고
    • Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
    • Limkin, E.J., Sun, R., Dercle, L., Zacharaki, E.I., Robert, C., Reuze, S., et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 28 (2017), 1191–1206.
    • (2017) Ann. Oncol. , vol.28 , pp. 1191-1206
    • Limkin, E.J.1    Sun, R.2    Dercle, L.3    Zacharaki, E.I.4    Robert, C.5    Reuze, S.6
  • 18
    • 84994851692 scopus 로고    scopus 로고
    • Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art
    • Lee, G., Lee, H.Y., Park, H., Schiebler, M.L., van Beek, E.J., Ohno, Y., et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur. J. Radiol. 86 (2017), 297–307.
    • (2017) Eur. J. Radiol. , vol.86 , pp. 297-307
    • Lee, G.1    Lee, H.Y.2    Park, H.3    Schiebler, M.L.4    van Beek, E.J.5    Ohno, Y.6
  • 19
    • 84994034554 scopus 로고    scopus 로고
    • Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma
    • Choi, E.R., Lee, H.Y., Jeong, J.Y., Choi, Y.L., Kim, J., Bae, J., et al. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma. Oncotarget 7 (2016), 67302–67313.
    • (2016) Oncotarget , vol.7 , pp. 67302-67313
    • Choi, E.R.1    Lee, H.Y.2    Jeong, J.Y.3    Choi, Y.L.4    Kim, J.5    Bae, J.6
  • 20
    • 85015108153 scopus 로고    scopus 로고
    • A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome
    • [Epub ahead of print]
    • Vargas, H.A., Veeraraghavan, H., Micco, M., Nougaret, S., Lakhman, Y., Meier, A.A., et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur. Radiol., 2017, 10.1007/s00330-017-4779-y [Epub ahead of print].
    • (2017) Eur. Radiol.
    • Vargas, H.A.1    Veeraraghavan, H.2    Micco, M.3    Nougaret, S.4    Lakhman, Y.5    Meier, A.A.6
  • 21
    • 85014410743 scopus 로고    scopus 로고
    • Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients
    • Yue, Y., Osipov, A., Fraass, B., Sandler, H., Zhang, X., Nissen, N., et al. Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients. J. Gastrointest. Oncol. 8 (2017), 127–138.
    • (2017) J. Gastrointest. Oncol. , vol.8 , pp. 127-138
    • Yue, Y.1    Osipov, A.2    Fraass, B.3    Sandler, H.4    Zhang, X.5    Nissen, N.6
  • 22
    • 85012884931 scopus 로고    scopus 로고
    • Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: pixelwise correlation with histology
    • [Epub ahead of print]
    • Lin, Y.C., Lin, G., Hong, J.H., Lin, Y.P., Chen, F.H., Ng, S.H., et al. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: pixelwise correlation with histology. J. Magn. Reson Imaging, 2017, 10.1002/jmri.25583 [Epub ahead of print].
    • (2017) J. Magn. Reson Imaging
    • Lin, Y.C.1    Lin, G.2    Hong, J.H.3    Lin, Y.P.4    Chen, F.H.5    Ng, S.H.6
  • 23
    • 84908222160 scopus 로고    scopus 로고
    • A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
    • Oberije, C., Nalbantov, G., Dekker, A., Boersma, L., Borger, J., Reymen, B., et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiother. Oncol. 112 (2014), 37–43.
    • (2014) Radiother. Oncol. , vol.112 , pp. 37-43
    • Oberije, C.1    Nalbantov, G.2    Dekker, A.3    Boersma, L.4    Borger, J.5    Reymen, B.6
  • 24
    • 84938850455 scopus 로고    scopus 로고
    • Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer
    • Parmar, C., Leijenaar, R.T., Grossmann, P., Rios, V.E., Bussink, J., Rietveld, D., et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci. Rep., 5, 2015, 11044.
    • (2015) Sci. Rep. , vol.5 , pp. 11044
    • Parmar, C.1    Leijenaar, R.T.2    Grossmann, P.3    Rios, V.E.4    Bussink, J.5    Rietveld, D.6
  • 25
    • 85016313953 scopus 로고    scopus 로고
    • Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels
    • Shafiq-Ul-Hassan, M., Zhang, G.G., Latifi, K., Ullah, G., Hunt, D.C., Balagurunathan, Y., et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 44 (2017), 1050–1062.
    • (2017) Med. Phys. , vol.44 , pp. 1050-1062
    • Shafiq-Ul-Hassan, M.1    Zhang, G.G.2    Latifi, K.3    Ullah, G.4    Hunt, D.C.5    Balagurunathan, Y.6
  • 26
    • 85007496839 scopus 로고    scopus 로고
    • Assessing agreement between radiomic features computed for multiple CT imaging settings
    • Lu, L., Ehmke, R.C., Schwartz, L.H., Zhao, B., Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS One, 11, 2016, e0166550.
    • (2016) PLoS One , vol.11
    • Lu, L.1    Ehmke, R.C.2    Schwartz, L.H.3    Zhao, B.4
  • 28
    • 84995469199 scopus 로고    scopus 로고
    • Reproducibility with repeat CT in radiomics study for rectal cancer
    • Hu, P., Wang, J., Zhong, H., Zhou, Z., Shen, L., Hu, W., et al. Reproducibility with repeat CT in radiomics study for rectal cancer. Oncotarget 7 (2016), 71440–71446.
    • (2016) Oncotarget , vol.7 , pp. 71440-71446
    • Hu, P.1    Wang, J.2    Zhong, H.3    Zhou, Z.4    Shen, L.5    Hu, W.6
  • 29
    • 84962314053 scopus 로고    scopus 로고
    • Reproducibility of radiomics for deciphering tumor phenotype with imaging
    • Zhao, B., Tan, Y., Tsai, W.Y., Qi, J., Xie, C., Lu, L., et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci. Rep., 6, 2016, 23428.
    • (2016) Sci. Rep. , vol.6 , pp. 23428
    • Zhao, B.1    Tan, Y.2    Tsai, W.Y.3    Qi, J.4    Xie, C.5    Lu, L.6
  • 30
    • 84975698783 scopus 로고    scopus 로고
    • Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation
    • van Velden, F.H., Kramer, G.M., Frings, V., Nissen, I.A., Mulder, E.R., de Langen, A.J., et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol. Imaging Biol. 18 (2016), 788–795.
    • (2016) Mol. Imaging Biol. , vol.18 , pp. 788-795
    • van Velden, F.H.1    Kramer, G.M.2    Frings, V.3    Nissen, I.A.4    Mulder, E.R.5    de Langen, A.J.6
  • 31
    • 84943774122 scopus 로고    scopus 로고
    • Measuring computed tomography scanner variability of radiomics features
    • Mackin, D., Fave, X., Zhang, L., Fried, D., Yang, J., Taylor, B., et al. Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50 (2015), 757–765.
    • (2015) Invest. Radiol. , vol.50 , pp. 757-765
    • Mackin, D.1    Fave, X.2    Zhang, L.3    Fried, D.4    Yang, J.5    Taylor, B.6
  • 32
    • 84991690918 scopus 로고    scopus 로고
    • Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule
    • He, L., Huang, Y., Ma, Z., Liang, C., Liang, C., Liu, Z., Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci. Rep., 6, 2016, 34921.
    • (2016) Sci. Rep. , vol.6 , pp. 34921
    • He, L.1    Huang, Y.2    Ma, Z.3    Liang, C.4    Liang, C.5    Liu, Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.