-
1
-
-
84857037061
-
Radiomics: extracting more information from medical images using advanced feature analysis
-
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G., Granton, P., et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48 (2012), 441–446.
-
(2012)
Eur. J. Cancer
, vol.48
, pp. 441-446
-
-
Lambin, P.1
Rios-Velazquez, E.2
Leijenaar, R.3
Carvalho, S.4
van Stiphout, R.G.5
Granton, P.6
-
2
-
-
84901946941
-
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
-
Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun., 5, 2014, 4006.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4006
-
-
Aerts, H.J.1
Velazquez, E.R.2
Leijenaar, R.T.3
Parmar, C.4
Grossmann, P.5
Carvalho, S.6
-
3
-
-
84955604605
-
Radiomics: images are more than pictures, they are data
-
Gillies, R.J., Kinahan, P.E., Hricak, H., Radiomics: images are more than pictures, they are data. Radiology 278 (2016), 563–577.
-
(2016)
Radiology
, vol.278
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
4
-
-
84988511917
-
Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC
-
Aerts, H.J., Grossmann, P., Tan, Y., Oxnard, G.G., Rizvi, N., Schwartz, L.H., et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci. Rep., 6, 2016, 33860.
-
(2016)
Sci. Rep.
, vol.6
, pp. 33860
-
-
Aerts, H.J.1
Grossmann, P.2
Tan, Y.3
Oxnard, G.G.4
Rizvi, N.5
Schwartz, L.H.6
-
5
-
-
85002169355
-
Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging
-
Sala, E., Mema, E., Himoto, Y., Veeraraghavan, H., Brenton, J.D., Snyder, A., et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin. Radiol. 72 (2017), 3–10.
-
(2017)
Clin. Radiol.
, vol.72
, pp. 3-10
-
-
Sala, E.1
Mema, E.2
Himoto, Y.3
Veeraraghavan, H.4
Brenton, J.D.5
Snyder, A.6
-
6
-
-
84936085910
-
A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities
-
Vallieres, M., Freeman, C.R., Skamene, S.R., El, N.I., A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60 (2015), 5471–5496.
-
(2015)
Phys. Med. Biol.
, vol.60
, pp. 5471-5496
-
-
Vallieres, M.1
Freeman, C.R.2
Skamene, S.R.3
El, N.I.4
-
7
-
-
85054102101
-
Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set
-
Li, H., Zhu, Y., Burnside, E.S., Huang, E., Drukker, K., Hoadley, K.A., et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer, 2, 2016.
-
(2016)
NPJ Breast Cancer
, vol.2
-
-
Li, H.1
Zhu, Y.2
Burnside, E.S.3
Huang, E.4
Drukker, K.5
Hoadley, K.A.6
-
8
-
-
84971500987
-
The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer
-
Liang, C., Huang, Y., He, L., Chen, X., Ma, Z., Dong, D., et al. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. Oncotarget 7 (2016), 31401–31412.
-
(2016)
Oncotarget
, vol.7
, pp. 31401-31412
-
-
Liang, C.1
Huang, Y.2
He, L.3
Chen, X.4
Ma, Z.5
Dong, D.6
-
9
-
-
85006922665
-
Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma
-
[Epub ahead of print]
-
Yu, J., Shi, Z., Lian, Y., Li, Z., Liu, T., Gao, Y., et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur. Radiol., 2016, 10.1007/s00330-016-4653-3 [Epub ahead of print].
-
(2016)
Eur. Radiol.
-
-
Yu, J.1
Shi, Z.2
Lian, Y.3
Li, Z.4
Liu, T.5
Gao, Y.6
-
10
-
-
84981194419
-
Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma
-
Grossmann, P., Gutman, D.A., Dunn, W.J., Holder, C.A., Aerts, H.J., Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma. BMC Cancer, 16, 2016, 611.
-
(2016)
BMC Cancer
, vol.16
, pp. 611
-
-
Grossmann, P.1
Gutman, D.A.2
Dunn, W.J.3
Holder, C.A.4
Aerts, H.J.5
-
11
-
-
85084513645
-
Defining clinical response criteria and early response criteria for precision oncology: current state-of-the-art and future perspectives
-
Subbiah, V., Chuang, H.H., Gambhire, D., Kairemo, K., Defining clinical response criteria and early response criteria for precision oncology: current state-of-the-art and future perspectives. Diagn. (Basel), 7, 2017.
-
(2017)
Diagn. (Basel)
, vol.7
-
-
Subbiah, V.1
Chuang, H.H.2
Gambhire, D.3
Kairemo, K.4
-
12
-
-
84994560182
-
Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI
-
Nie, K., Shi, L., Chen, Q., Hu, X., Jabbour, S.K., Yue, N., et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin. Cancer Res. 22 (2016), 5256–5264.
-
(2016)
Clin. Cancer Res.
, vol.22
, pp. 5256-5264
-
-
Nie, K.1
Shi, L.2
Chen, Q.3
Hu, X.4
Jabbour, S.K.5
Yue, N.6
-
13
-
-
84867139157
-
Radiomics: the process and the challenges
-
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. Radiomics: the process and the challenges. Magn. Reson Imaging 30 (2012), 1234–1248.
-
(2012)
Magn. Reson Imaging
, vol.30
, pp. 1234-1248
-
-
Kumar, V.1
Gu, Y.2
Basu, S.3
Berglund, A.4
Eschrich, S.A.5
Schabath, M.B.6
-
14
-
-
84954549862
-
Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer
-
Parmar, C., Grossmann, P., Rietveld, D., Rietbergen, M.M., Lambin, P., Aerts, H.J., Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front. Oncol., 5, 2015, 272.
-
(2015)
Front. Oncol.
, vol.5
, pp. 272
-
-
Parmar, C.1
Grossmann, P.2
Rietveld, D.3
Rietbergen, M.M.4
Lambin, P.5
Aerts, H.J.6
-
15
-
-
84939498419
-
Machine learning methods for quantitative radiomic biomarkers
-
Parmar, C., Grossmann, P., Bussink, J., Lambin, P., Aerts, H.J., Machine learning methods for quantitative radiomic biomarkers. Sci. Rep., 5, 2015, 13087.
-
(2015)
Sci. Rep.
, vol.5
, pp. 13087
-
-
Parmar, C.1
Grossmann, P.2
Bussink, J.3
Lambin, P.4
Aerts, H.J.5
-
16
-
-
85009373564
-
Radiomic phenotyping in brain cancer to unravel hidden information in medical images
-
Abrol, S., Kotrotsou, A., Salem, A., Zinn, P.O., Colen, R.R., Radiomic phenotyping in brain cancer to unravel hidden information in medical images. Top. Magn. Reson Imaging 26 (2017), 43–53.
-
(2017)
Top. Magn. Reson Imaging
, vol.26
, pp. 43-53
-
-
Abrol, S.1
Kotrotsou, A.2
Salem, A.3
Zinn, P.O.4
Colen, R.R.5
-
17
-
-
85021117855
-
Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology
-
Limkin, E.J., Sun, R., Dercle, L., Zacharaki, E.I., Robert, C., Reuze, S., et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 28 (2017), 1191–1206.
-
(2017)
Ann. Oncol.
, vol.28
, pp. 1191-1206
-
-
Limkin, E.J.1
Sun, R.2
Dercle, L.3
Zacharaki, E.I.4
Robert, C.5
Reuze, S.6
-
18
-
-
84994851692
-
Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art
-
Lee, G., Lee, H.Y., Park, H., Schiebler, M.L., van Beek, E.J., Ohno, Y., et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur. J. Radiol. 86 (2017), 297–307.
-
(2017)
Eur. J. Radiol.
, vol.86
, pp. 297-307
-
-
Lee, G.1
Lee, H.Y.2
Park, H.3
Schiebler, M.L.4
van Beek, E.J.5
Ohno, Y.6
-
19
-
-
84994034554
-
Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma
-
Choi, E.R., Lee, H.Y., Jeong, J.Y., Choi, Y.L., Kim, J., Bae, J., et al. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma. Oncotarget 7 (2016), 67302–67313.
-
(2016)
Oncotarget
, vol.7
, pp. 67302-67313
-
-
Choi, E.R.1
Lee, H.Y.2
Jeong, J.Y.3
Choi, Y.L.4
Kim, J.5
Bae, J.6
-
20
-
-
85015108153
-
A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome
-
[Epub ahead of print]
-
Vargas, H.A., Veeraraghavan, H., Micco, M., Nougaret, S., Lakhman, Y., Meier, A.A., et al. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur. Radiol., 2017, 10.1007/s00330-017-4779-y [Epub ahead of print].
-
(2017)
Eur. Radiol.
-
-
Vargas, H.A.1
Veeraraghavan, H.2
Micco, M.3
Nougaret, S.4
Lakhman, Y.5
Meier, A.A.6
-
21
-
-
85014410743
-
Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients
-
Yue, Y., Osipov, A., Fraass, B., Sandler, H., Zhang, X., Nissen, N., et al. Identifying prognostic intratumor heterogeneity using pre- and post-radiotherapy 18F-FDG PET images for pancreatic cancer patients. J. Gastrointest. Oncol. 8 (2017), 127–138.
-
(2017)
J. Gastrointest. Oncol.
, vol.8
, pp. 127-138
-
-
Yue, Y.1
Osipov, A.2
Fraass, B.3
Sandler, H.4
Zhang, X.5
Nissen, N.6
-
22
-
-
85012884931
-
Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: pixelwise correlation with histology
-
[Epub ahead of print]
-
Lin, Y.C., Lin, G., Hong, J.H., Lin, Y.P., Chen, F.H., Ng, S.H., et al. Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: pixelwise correlation with histology. J. Magn. Reson Imaging, 2017, 10.1002/jmri.25583 [Epub ahead of print].
-
(2017)
J. Magn. Reson Imaging
-
-
Lin, Y.C.1
Lin, G.2
Hong, J.H.3
Lin, Y.P.4
Chen, F.H.5
Ng, S.H.6
-
23
-
-
84908222160
-
A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
-
Oberije, C., Nalbantov, G., Dekker, A., Boersma, L., Borger, J., Reymen, B., et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiother. Oncol. 112 (2014), 37–43.
-
(2014)
Radiother. Oncol.
, vol.112
, pp. 37-43
-
-
Oberije, C.1
Nalbantov, G.2
Dekker, A.3
Boersma, L.4
Borger, J.5
Reymen, B.6
-
24
-
-
84938850455
-
Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer
-
Parmar, C., Leijenaar, R.T., Grossmann, P., Rios, V.E., Bussink, J., Rietveld, D., et al. Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer. Sci. Rep., 5, 2015, 11044.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11044
-
-
Parmar, C.1
Leijenaar, R.T.2
Grossmann, P.3
Rios, V.E.4
Bussink, J.5
Rietveld, D.6
-
25
-
-
85016313953
-
Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels
-
Shafiq-Ul-Hassan, M., Zhang, G.G., Latifi, K., Ullah, G., Hunt, D.C., Balagurunathan, Y., et al. Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med. Phys. 44 (2017), 1050–1062.
-
(2017)
Med. Phys.
, vol.44
, pp. 1050-1062
-
-
Shafiq-Ul-Hassan, M.1
Zhang, G.G.2
Latifi, K.3
Ullah, G.4
Hunt, D.C.5
Balagurunathan, Y.6
-
26
-
-
85007496839
-
Assessing agreement between radiomic features computed for multiple CT imaging settings
-
Lu, L., Ehmke, R.C., Schwartz, L.H., Zhao, B., Assessing agreement between radiomic features computed for multiple CT imaging settings. PLoS One, 11, 2016, e0166550.
-
(2016)
PLoS One
, vol.11
-
-
Lu, L.1
Ehmke, R.C.2
Schwartz, L.H.3
Zhao, B.4
-
27
-
-
85007107437
-
Stability of radiomic features in CT perfusion maps
-
Bogowicz, M., Riesterer, O., Bundschuh, R.A., Veit-Haibach, P., Hullner, M., Studer, G., et al. Stability of radiomic features in CT perfusion maps. Phys. Med. Biol. 61 (2016), 8736–8749.
-
(2016)
Phys. Med. Biol.
, vol.61
, pp. 8736-8749
-
-
Bogowicz, M.1
Riesterer, O.2
Bundschuh, R.A.3
Veit-Haibach, P.4
Hullner, M.5
Studer, G.6
-
28
-
-
84995469199
-
Reproducibility with repeat CT in radiomics study for rectal cancer
-
Hu, P., Wang, J., Zhong, H., Zhou, Z., Shen, L., Hu, W., et al. Reproducibility with repeat CT in radiomics study for rectal cancer. Oncotarget 7 (2016), 71440–71446.
-
(2016)
Oncotarget
, vol.7
, pp. 71440-71446
-
-
Hu, P.1
Wang, J.2
Zhong, H.3
Zhou, Z.4
Shen, L.5
Hu, W.6
-
29
-
-
84962314053
-
Reproducibility of radiomics for deciphering tumor phenotype with imaging
-
Zhao, B., Tan, Y., Tsai, W.Y., Qi, J., Xie, C., Lu, L., et al. Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci. Rep., 6, 2016, 23428.
-
(2016)
Sci. Rep.
, vol.6
, pp. 23428
-
-
Zhao, B.1
Tan, Y.2
Tsai, W.Y.3
Qi, J.4
Xie, C.5
Lu, L.6
-
30
-
-
84975698783
-
Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation
-
van Velden, F.H., Kramer, G.M., Frings, V., Nissen, I.A., Mulder, E.R., de Langen, A.J., et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol. Imaging Biol. 18 (2016), 788–795.
-
(2016)
Mol. Imaging Biol.
, vol.18
, pp. 788-795
-
-
van Velden, F.H.1
Kramer, G.M.2
Frings, V.3
Nissen, I.A.4
Mulder, E.R.5
de Langen, A.J.6
-
31
-
-
84943774122
-
Measuring computed tomography scanner variability of radiomics features
-
Mackin, D., Fave, X., Zhang, L., Fried, D., Yang, J., Taylor, B., et al. Measuring computed tomography scanner variability of radiomics features. Invest. Radiol. 50 (2015), 757–765.
-
(2015)
Invest. Radiol.
, vol.50
, pp. 757-765
-
-
Mackin, D.1
Fave, X.2
Zhang, L.3
Fried, D.4
Yang, J.5
Taylor, B.6
-
32
-
-
84991690918
-
Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule
-
He, L., Huang, Y., Ma, Z., Liang, C., Liang, C., Liu, Z., Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci. Rep., 6, 2016, 34921.
-
(2016)
Sci. Rep.
, vol.6
, pp. 34921
-
-
He, L.1
Huang, Y.2
Ma, Z.3
Liang, C.4
Liang, C.5
Liu, Z.6
|