메뉴 건너뛰기




Volumn 57, Issue 1, 2013, Pages 73-86

On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks

Author keywords

Bayesian networks; Computer aided detection; Data discretisation; Mammography; Medical image interpretation; Structure learning

Indexed keywords

CLASSIFICATION PERFORMANCE; COMPUTER-AIDED DETECTION; DATA DISCRETISATION; GAUSSIAN PROBABILITY DISTRIBUTIONS; MAMMOGRAPHIC EXAMINATION; MEDICAL IMAGES; MULTINOMIAL DISTRIBUTIONS; STRUCTURE-LEARNING;

EID: 84875259371     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2012.12.004     Document Type: Article
Times cited : (41)

References (47)
  • 1
    • 63649101466 scopus 로고    scopus 로고
    • Improved mammographic CAD performance using multi-view information: a Bayesian network framework
    • Velikova M., Samulski M., Lucas P.J.F., Karssemeijer N. Improved mammographic CAD performance using multi-view information: a Bayesian network framework. Physics in Medicine and Biology 2009, 54:1131-1147.
    • (2009) Physics in Medicine and Biology , vol.54 , pp. 1131-1147
    • Velikova, M.1    Samulski, M.2    Lucas, P.J.F.3    Karssemeijer, N.4
  • 2
    • 84859435824 scopus 로고    scopus 로고
    • A probabilistic framework for image information fusion with an application to mammographic analysis
    • Velikova M., Lucas P.J.F., Samulski M., Karssemeijer N. A probabilistic framework for image information fusion with an application to mammographic analysis. Medical Image Analysis 2012, 16(4):857-865.
    • (2012) Medical Image Analysis , vol.16 , Issue.4 , pp. 857-865
    • Velikova, M.1    Lucas, P.J.F.2    Samulski, M.3    Karssemeijer, N.4
  • 3
    • 0030212929 scopus 로고    scopus 로고
    • The sensitivity of belief networks to imprecise probabilities: an experimental investigation
    • Pradhan A., Henrion M., Provan G., del Favero B., Huang K. The sensitivity of belief networks to imprecise probabilities: an experimental investigation. Artificial Intelligence 1996, 84(1-2):363-397.
    • (1996) Artificial Intelligence , vol.84 , Issue.1-2 , pp. 363-397
    • Pradhan, A.1    Henrion, M.2    Provan, G.3    del Favero, B.4    Huang, K.5
  • 5
    • 11144265313 scopus 로고    scopus 로고
    • Bayesian networks of BI-RADS descriptors for breast lesion classification
    • Electrical Engineering/Electronics, Computer, Communications and Information Technology Association, G. Dumont, D.L. Hudson, Z.-P. Liang (Eds.)
    • Fischer E.A., Lo J.Y., Markey M.K. Bayesian networks of BI-RADS descriptors for breast lesion classification. Proceedings of the 26th annual international conference of the IEEE EMB Society, vol. 4 2004, 3031-3034. Electrical Engineering/Electronics, Computer, Communications and Information Technology Association. G. Dumont, D.L. Hudson, Z.-P. Liang (Eds.).
    • (2004) Proceedings of the 26th annual international conference of the IEEE EMB Society, vol. 4 , pp. 3031-3034
    • Fischer, E.A.1    Lo, J.Y.2    Markey, M.K.3
  • 6
    • 33747603683 scopus 로고    scopus 로고
    • Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results
    • Burnside E.S., Rubin D.L., Fine J.P., Shachter R.D., Sisney G.A., Leung W.K. Bayesian network to predict breast cancer risk of mammographic microcalcifications and reduce number of benign biopsy results. Journal of Radiology 2006, 240(3):666-673.
    • (2006) Journal of Radiology , vol.240 , Issue.3 , pp. 666-673
    • Burnside, E.S.1    Rubin, D.L.2    Fine, J.P.3    Shachter, R.D.4    Sisney, G.A.5    Leung, W.K.6
  • 13
    • 84974667636 scopus 로고    scopus 로고
    • Investigation and reduction of discretization variance in decision tree induction
    • Geurts P., Wehenkel L. Investigation and reduction of discretization variance in decision tree induction. Lecture Notes in Computer Science 2000, 1810:162-170.
    • (2000) Lecture Notes in Computer Science , vol.1810 , pp. 162-170
    • Geurts, P.1    Wehenkel, L.2
  • 14
    • 41749119664 scopus 로고    scopus 로고
    • Wrapper discretization by means of estimation of distribution algorithms
    • Flores J.L., Inza I., Larrañaga P. Wrapper discretization by means of estimation of distribution algorithms. Intelligent Data Analysis 2007, 11(5):525-545.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.5 , pp. 525-545
    • Flores, J.L.1    Inza, I.2    Larrañaga, P.3
  • 16
    • 60649104618 scopus 로고    scopus 로고
    • Comparative analysis of the impact of discretization on the classification with naïve Bayes and semi-naïve Bayes classifiers
    • IEEE Computer Society, Los Alamitos, CA, USA, M. Arif Wani, D. Xue wen Chen, L. Casasent, T. Kurgan, K. Hu, Hafeez (Eds.)
    • Mizianty M., Kurgan L., Ogiela M. Comparative analysis of the impact of discretization on the classification with naïve Bayes and semi-naïve Bayes classifiers. Proc. of the 7th international conference on machine learning and applications 2008, 823-828. IEEE Computer Society, Los Alamitos, CA, USA. M. Arif Wani, D. Xue wen Chen, L. Casasent, T. Kurgan, K. Hu, Hafeez (Eds.).
    • (2008) Proc. of the 7th international conference on machine learning and applications , pp. 823-828
    • Mizianty, M.1    Kurgan, L.2    Ogiela, M.3
  • 17
    • 36049028672 scopus 로고    scopus 로고
    • A comparative analysis of discretization methods for medical datamining with naïve Bayesian classifier
    • IEEE Computer Society, Los Alamitos, CA, USA, S.P. Mohanty, A. Sahoo (Eds.)
    • Abraham R., Simha J.B., Iyengar S.S. A comparative analysis of discretization methods for medical datamining with naïve Bayesian classifier. Proc. of the 9th international conference on information technology 2006, 235-236. IEEE Computer Society, Los Alamitos, CA, USA. S.P. Mohanty, A. Sahoo (Eds.).
    • (2006) Proc. of the 9th international conference on information technology , pp. 235-236
    • Abraham, R.1    Simha, J.B.2    Iyengar, S.S.3
  • 18
    • 74949097868 scopus 로고    scopus 로고
    • An empirical investigation of the impact of discretization on common data distributions
    • A. Abraham, M. Köppen, K. Franke (Eds.)
    • Ismail M.K., Ciesielski V. An empirical investigation of the impact of discretization on common data distributions. Proc. of the 3rd international conference on hybrid intelligent systems 2003, 692-701. A. Abraham, M. Köppen, K. Franke (Eds.).
    • (2003) Proc. of the 3rd international conference on hybrid intelligent systems , pp. 692-701
    • Ismail, M.K.1    Ciesielski, V.2
  • 19
    • 0002444961 scopus 로고
    • Counting unlabeled acyclic digraphs
    • Robinson R.W. Counting unlabeled acyclic digraphs. Combinatorial Mathematics V 1977, 622:28-43.
    • (1977) Combinatorial Mathematics V , vol.622 , pp. 28-43
    • Robinson, R.W.1
  • 20
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • Andersson S.A., Madigan D., Perlman M.D. A characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics 1997, 25:505-541.
    • (1997) Annals of Statistics , vol.25 , pp. 505-541
    • Andersson, S.A.1    Madigan, D.2    Perlman, M.D.3
  • 22
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I: algorithms and empirical evaluation
    • Aliferis C.F., Statnikov A., Tsamardinos I., Mani S., Koutsoukos X.D. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part I: algorithms and empirical evaluation. Journal of Machine Learning Research 2010, 11:171-234.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 23
    • 75749145760 scopus 로고    scopus 로고
    • A novel Markov boundary based feature subset selection algorithm
    • Rodrigues de Morais S., Aussem A. A novel Markov boundary based feature subset selection algorithm. Neurocomputing 2010, 73(4-6):578-584.
    • (2010) Neurocomputing , vol.73 , Issue.4-6 , pp. 578-584
    • Rodrigues de Morais, S.1    Aussem, A.2
  • 30
    • 34547839743 scopus 로고    scopus 로고
    • Learning effective brain connectivity with dynamic Bayesian networks
    • Rajapakse J.C., Zhou J. Learning effective brain connectivity with dynamic Bayesian networks. Neuroimage 2007, 37(3):749-760.
    • (2007) Neuroimage , vol.37 , Issue.3 , pp. 749-760
    • Rajapakse, J.C.1    Zhou, J.2
  • 31
    • 34548479030 scopus 로고    scopus 로고
    • Evolving a Bayesian classifier for ECG-based age classification in medical applications
    • Wiggins M., Saad A., Litt B., Vachtsevanos G. Evolving a Bayesian classifier for ECG-based age classification in medical applications. Applied Soft Computing 2008, 8(1):599-608.
    • (2008) Applied Soft Computing , vol.8 , Issue.1 , pp. 599-608
    • Wiggins, M.1    Saad, A.2    Litt, B.3    Vachtsevanos, G.4
  • 32
    • 0028230453 scopus 로고
    • Benefit of independent double reading in a population-based mammography screening program
    • Thurfjell E.L., Lernevall K.A., Taube A.A. Benefit of independent double reading in a population-based mammography screening program. Radiology 1994, 191:241-244.
    • (1994) Radiology , vol.191 , pp. 241-244
    • Thurfjell, E.L.1    Lernevall, K.A.2    Taube, A.A.3
  • 33
    • 84875271847 scopus 로고
    • Breast Imaging Reporting and Data System (BI-RADS). Reston, VA: American College of Radiology.
    • Breast Imaging Reporting and Data System (BI-RADS). Reston, VA: American College of Radiology; 1993.
    • (1993)
  • 35
    • 35248839630 scopus 로고    scopus 로고
    • Analysis of temporal mammogram pairs to detect and characterize mass lesions
    • PhD thesis, Radboud University Nijmegen
    • Timp S. Analysis of temporal mammogram pairs to detect and characterize mass lesions. PhD thesis, Radboud University Nijmegen; 2006.
    • (2006)
    • Timp, S.1
  • 36
    • 0036174154 scopus 로고    scopus 로고
    • Improvement of computerized mass detection on mammograms: fusion of two-view information
    • Paquerault S., Petrick N., Chan H., Sahiner B., Helvie M.A. Improvement of computerized mass detection on mammograms: fusion of two-view information. Medical Physics 2002, 29(2):238-247.
    • (2002) Medical Physics , vol.29 , Issue.2 , pp. 238-247
    • Paquerault, S.1    Petrick, N.2    Chan, H.3    Sahiner, B.4    Helvie, M.A.5
  • 37
    • 34047256067 scopus 로고    scopus 로고
    • Computer-aided mass detection based on ipsilateral multiview mammograms
    • Qian W., Song D., Lei M., Sankar R., Eikman E. Computer-aided mass detection based on ipsilateral multiview mammograms. Academic Radiology 2007, 14(5):530-538.
    • (2007) Academic Radiology , vol.14 , Issue.5 , pp. 530-538
    • Qian, W.1    Song, D.2    Lei, M.3    Sankar, R.4    Eikman, E.5
  • 38
    • 0032593842 scopus 로고    scopus 로고
    • Multi-image CAD employing features derived from ipsilateral mammographic views
    • K.M. Hanson (Ed.) Proc. of SPIE
    • Good W., Zheng B., Chang Y., Wang X., Maitz G., Gur D. Multi-image CAD employing features derived from ipsilateral mammographic views. Medical imaging 1999, vol. 3661:474-485. K.M. Hanson (Ed.).
    • (1999) Medical imaging , vol.3661 , pp. 474-485
    • Good, W.1    Zheng, B.2    Chang, Y.3    Wang, X.4    Maitz, G.5    Gur, D.6
  • 39
    • 33847677137 scopus 로고    scopus 로고
    • Combining two mammographic projections in a computer aided mass detection method
    • van Engeland S., Karssemeijer N. Combining two mammographic projections in a computer aided mass detection method. Medical Physics 2007, 34(3):898-905.
    • (2007) Medical Physics , vol.34 , Issue.3 , pp. 898-905
    • van Engeland, S.1    Karssemeijer, N.2
  • 42
    • 84875251662 scopus 로고    scopus 로고
    • Bayesian Network Toolbox (BNT). [accessed August 2012].
    • Murphy K. Bayesian Network Toolbox (BNT). ; 2007 [accessed August 2012]. https://code.google.com/p/bnt/.
    • (2007)
    • Murphy, K.1
  • 44
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30(7):1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 45
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos I., Brown L.E., Aliferis C.F. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 2006, 65(1):31-78.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 46
    • 34347345603 scopus 로고    scopus 로고
    • Learning Bayesian Network Model Structure from Data
    • PhD thesis, Carnegie-Mellon University; 2003.
    • Margaritis D. Learning Bayesian Network Model Structure from Data. PhD thesis, Carnegie-Mellon University; 2003.
    • Margaritis, D.1
  • 47
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian networks with the bnlearn R package
    • Scutari M. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software 2010, 35(3):1-22.
    • (2010) Journal of Statistical Software , vol.35 , Issue.3 , pp. 1-22
    • Scutari, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.