메뉴 건너뛰기




Volumn 30, Issue 4, 2017, Pages 460-468

Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities

Author keywords

Artificial intelligence; Artificial neural networks (ANNs); Classification; Machine learning; Radiography

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTERIZED TOMOGRAPHY; CONVOLUTION; IMAGE CLASSIFICATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; RADIOGRAPHY; TUBES (COMPONENTS); X RAY RADIOGRAPHY;

EID: 85020637979     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-017-9980-7     Document Type: Article
Times cited : (91)

References (23)
  • 2
    • 0024461731 scopus 로고
    • Assessment of routine chest roentgenograms and the physical examination to confirm endotracheal tube position
    • Brunel W, Coleman DL, Schwartz DE, Peper E, Cohen NH: Assessment of routine chest roentgenograms and the physical examination to confirm endotracheal tube position. Chest 96(5):1043–5,1989
    • (1989) Chest , vol.96 , Issue.5 , pp. 1043-1045
    • Brunel, W.1    Coleman, D.L.2    Schwartz, D.E.3    Peper, E.4    Cohen, N.H.5
  • 3
    • 0016160344 scopus 로고
    • Complications of assisted ventilation: a prospective study of 354 consecutive episodes
    • Zwillich CW, Pierson DJ, Creagh CE, Sutton FD, Schatz E, Petty TL: Complications of assisted ventilation: a prospective study of 354 consecutive episodes. Am J Med 57(2):161–70,1974
    • (1974) Am J Med , vol.57 , Issue.2 , pp. 161-170
    • Zwillich, C.W.1    Pierson, D.J.2    Creagh, C.E.3    Sutton, F.D.4    Schatz, E.5    Petty, T.L.6
  • 5
    • 84922599389 scopus 로고    scopus 로고
    • Automated detection of endotracheal tubes in paediatric chest radiographs
    • Kao EF, Jaw TS, Li CW, Chou MC, Liu GC: Automated detection of endotracheal tubes in paediatric chest radiographs. Comput Methods Prog Biomed 118(1):1–10,2015
    • (2015) Comput Methods Prog Biomed , vol.118 , Issue.1 , pp. 1-10
    • Kao, E.F.1    Jaw, T.S.2    Li, C.W.3    Chou, M.C.4    Liu, G.C.5
  • 6
    • 84974784697 scopus 로고    scopus 로고
    • Endotracheal tubes positioning detection in adult portable chest radiography for intensive care unit
    • Chen S, Zhang M, Yao L, Xu W: Endotracheal tubes positioning detection in adult portable chest radiography for intensive care unit. Int J Comput Assist Radiol Surg 11(11):2049–57,2016
    • (2016) Int J Comput Assist Radiol Surg , vol.11 , Issue.11 , pp. 2049-2057
    • Chen, S.1    Zhang, M.2    Yao, L.3    Xu, W.4
  • 9
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al.: Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252,2015
    • (2015) Int J Comput Vis , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 11
    • 85015709769 scopus 로고    scopus 로고
    • High-throughput classification of radiographs using deep convolutional neural networks
    • Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 11:1–7, 2016
    • (2016) J Digit Imaging , vol.11 , pp. 1-7
    • Rajkomar, A.1    Lingam, S.2    Taylor, A.G.3    Blum, M.4    Mongan, J.5
  • 12
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • PID: 25562829
    • Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224, 2015
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7
  • 13
    • 84969962996 scopus 로고    scopus 로고
    • Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
    • Shin HC, Roth HR, Gao M, et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298,2016
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1285-1298
    • Shin, H.C.1    Roth, H.R.2    Gao, M.3
  • 18
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: a framework for some traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR et al.: Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21(1):128–138,2010
    • (2010) Epidemiology , vol.21 , Issue.1 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 19
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159,1997
    • (1997) Pattern Recogn , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 20
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: notes and practical considerations for researchers
    • Fawcett T.: ROC graphs: notes and practical considerations for researchers. Mach Learn 31(1):1–38,2004
    • (2004) Mach Learn , vol.31 , Issue.1 , pp. 1-38
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.