-
1
-
-
0017085209
-
Radiographic evaluation of endotracheal tube position
-
Goodman LR, Conrardy PA, Laing F, Singer MM: Radiographic evaluation of endotracheal tube position. Am J Roentgenol 127(3):433–4,1976
-
(1976)
Am J Roentgenol
, vol.127
, Issue.3
, pp. 433-434
-
-
Goodman, L.R.1
Conrardy, P.A.2
Laing, F.3
Singer, M.M.4
-
2
-
-
0024461731
-
Assessment of routine chest roentgenograms and the physical examination to confirm endotracheal tube position
-
Brunel W, Coleman DL, Schwartz DE, Peper E, Cohen NH: Assessment of routine chest roentgenograms and the physical examination to confirm endotracheal tube position. Chest 96(5):1043–5,1989
-
(1989)
Chest
, vol.96
, Issue.5
, pp. 1043-1045
-
-
Brunel, W.1
Coleman, D.L.2
Schwartz, D.E.3
Peper, E.4
Cohen, N.H.5
-
3
-
-
0016160344
-
Complications of assisted ventilation: a prospective study of 354 consecutive episodes
-
Zwillich CW, Pierson DJ, Creagh CE, Sutton FD, Schatz E, Petty TL: Complications of assisted ventilation: a prospective study of 354 consecutive episodes. Am J Med 57(2):161–70,1974
-
(1974)
Am J Med
, vol.57
, Issue.2
, pp. 161-170
-
-
Zwillich, C.W.1
Pierson, D.J.2
Creagh, C.E.3
Sutton, F.D.4
Schatz, E.5
Petty, T.L.6
-
4
-
-
84874874928
-
An improved automatic computer aided tube detection and labeling system on chest radiographs. Proc. SPIE 8315
-
Ramakrishna B, Brown M, Goldin J, Cagnon C, Enzmann D: An improved automatic computer aided tube detection and labeling system on chest radiographs. Proc. SPIE 8315, Medical Imaging 2012: Computer-Aided Diagnosis, 83150R (February 23, 2012); doi:10.1117/12.911839
-
(2012)
Medical Imaging 2012: Computer-Aided Diagnosis, 83150R (February
, pp. 23
-
-
Ramakrishna, B.1
Brown, M.2
Goldin, J.3
Cagnon, C.4
Enzmann, D.5
-
5
-
-
84922599389
-
Automated detection of endotracheal tubes in paediatric chest radiographs
-
Kao EF, Jaw TS, Li CW, Chou MC, Liu GC: Automated detection of endotracheal tubes in paediatric chest radiographs. Comput Methods Prog Biomed 118(1):1–10,2015
-
(2015)
Comput Methods Prog Biomed
, vol.118
, Issue.1
, pp. 1-10
-
-
Kao, E.F.1
Jaw, T.S.2
Li, C.W.3
Chou, M.C.4
Liu, G.C.5
-
6
-
-
84974784697
-
Endotracheal tubes positioning detection in adult portable chest radiography for intensive care unit
-
Chen S, Zhang M, Yao L, Xu W: Endotracheal tubes positioning detection in adult portable chest radiography for intensive care unit. Int J Comput Assist Radiol Surg 11(11):2049–57,2016
-
(2016)
Int J Comput Assist Radiol Surg
, vol.11
, Issue.11
, pp. 2049-2057
-
-
Chen, S.1
Zhang, M.2
Yao, L.3
Xu, W.4
-
9
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al.: Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252,2015
-
(2015)
Int J Comput Vis
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
10
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
Bar Y, Diamant I, Wolf L, Greenspan H: Deep learning with non-medical training used for chest pathology identification. Proc.SPIE Medical Imaging, International Society for Optics and Photonics: 9414, 2015
-
(2015)
Proc.SPIE Medical Imaging, International Society for Optics and Photonics:
, vol.9414
-
-
Bar, Y.1
Diamant, I.2
Wolf, L.3
Greenspan, H.4
-
11
-
-
85015709769
-
High-throughput classification of radiographs using deep convolutional neural networks
-
Rajkomar A, Lingam S, Taylor AG, Blum M, Mongan J: High-throughput classification of radiographs using deep convolutional neural networks. J Digit Imaging 11:1–7, 2016
-
(2016)
J Digit Imaging
, vol.11
, pp. 1-7
-
-
Rajkomar, A.1
Lingam, S.2
Taylor, A.G.3
Blum, M.4
Mongan, J.5
-
12
-
-
84921492033
-
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
-
PID: 25562829
-
Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224, 2015
-
(2015)
NeuroImage
, vol.108
, pp. 214-224
-
-
Zhang, W.1
Li, R.2
Deng, H.3
Wang, L.4
Lin, W.5
Ji, S.6
Shen, D.7
-
13
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin HC, Roth HR, Gao M, et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298,2016
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.3
-
14
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–10,2016
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
Stumpe, M.C.4
Wu, D.5
Narayanaswamy, A.6
Venugopalan, S.7
Widner, K.8
Madams, T.9
Cuadros, J.10
Kim, R.11
-
15
-
-
85055090691
-
-
Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv preprint arXiv:1511.06348, 2015
-
(2015)
How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv preprint arXiv
, vol.1511
, pp. 06348
-
-
Cho, J.1
Lee, K.2
Shin, E.3
Choy, G.4
Do, S.5
-
18
-
-
73849094087
-
Assessing the performance of prediction models: a framework for some traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR et al.: Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology 21(1):128–138,2010
-
(2010)
Epidemiology
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
-
19
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley AP: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 30(7):1145–1159,1997
-
(1997)
Pattern Recogn
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
20
-
-
26944454497
-
ROC graphs: notes and practical considerations for researchers
-
Fawcett T.: ROC graphs: notes and practical considerations for researchers. Mach Learn 31(1):1–38,2004
-
(2004)
Mach Learn
, vol.31
, Issue.1
, pp. 1-38
-
-
Fawcett, T.1
-
21
-
-
84930261390
-
-
Springer, Berlin Heidelberg
-
Delrue L, Gosselin R, Ilsen B, Van Landeghem A, de Mey J, Duyck P: Difficulties in the interpretation of chest radiography. In Comparative Interpretation of CT and Standard Radiography of the Chest. Berlin Heidelberg: Springer, 2011, pp. 27–49
-
(2011)
Difficulties in the interpretation of chest radiography. In Comparative Interpretation of CT and Standard Radiography of the Chest
, pp. 27-49
-
-
Delrue, L.1
Gosselin, R.2
Ilsen, B.3
Van Landeghem, A.4
de Mey, J.5
Duyck, P.6
-
22
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Yosinski J, Clune J, Bengio Y, Lipson H: How transferable are features in deep neural networks? In Advances in neural information processing systems, 2014, pp. 3320–3328
-
(2014)
Advances in neural information processing systems
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
|