메뉴 건너뛰기




Volumn 12, Issue 1, 2012, Pages

Predicting sample size required for classification performance

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; AUTOMATED PATTERN RECOGNITION; COMPUTER ASSISTED DIAGNOSIS; HUMAN; LEARNING; LEARNING CURVE; METHODOLOGY; NONLINEAR SYSTEM; PREDICTIVE VALUE; PROBLEM BASED LEARNING; REPRODUCIBILITY; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS;

EID: 84857008691     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/1472-6947-12-8     Document Type: Article
Times cited : (408)

References (42)
  • 2
    • 40749107034 scopus 로고    scopus 로고
    • How large a training set is needed to develop a classifier for microarray data?
    • DOI 10.1158/1078-0432.CCR-07-0443
    • How Large a Training Set is Needed to Develop a Classifier for Microarray Data? Dobbin K, Zhao Y, Simon R, Clinical Cancer Research 2008 14 1 108 114 10.1158/1078-0432.CCR-07-0443 18172259 (Pubitemid 351377984)
    • (2008) Clinical Cancer Research , vol.14 , Issue.1 , pp. 108-114
    • Dobbin, K.K.1    Zhao, Y.2    Simon, R.M.3
  • 3
    • 33750578696 scopus 로고    scopus 로고
    • Impact of sample size on the performance of multiple-model pharmacokinetic simulations
    • DOI 10.1128/AAC.00337-06
    • Impact of sample size on the performance of multiple-model pharmacokinetic simulations. Tam VH, Kabbara S, Yeh RF, Leary RH, Antimicrobial agents and chemotherapy 2006 50 11 3950 3952 10.1128/AAC.00337-06 16954312 (Pubitemid 44684925)
    • (2006) Antimicrobial Agents and Chemotherapy , vol.50 , Issue.11 , pp. 3950-3952
    • Tam, V.H.1    Kabbara, S.2    Yeh, R.F.3    Leary, R.H.4
  • 4
    • 66749184049 scopus 로고    scopus 로고
    • Effects of sample size on robustness and prediction accuracy of a prognostic gene signature
    • 10.1186/1471-2105-10-147 19445687
    • Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. Kim S-Y, BMC bioinformatics 2009 10 1 147 10.1186/1471-2105-10-147 19445687
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 147
    • Kim, S.-Y.1
  • 6
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Text Classification from Labeled and Unlabeled Documents using EM. Nigam K, McCallum AK, Thrun S, Mitchell T, Mach Learn 2000 39 2-3 103 134 (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 7
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • DOI 10.1016/j.csl.2007.12.001, PII S088523080700068X
    • A stopping criterion for active learning. Vlachos A, Computer Speech and Language 2008 22 3 295 312 10.1016/j.csl.2007.12.001 (Pubitemid 351329454)
    • (2008) Computer Speech and Language , vol.22 , Issue.3 , pp. 295-312
    • Vlachos, A.1
  • 9
    • 77953755634 scopus 로고    scopus 로고
    • Confidence-based stopping criteria for active learning for data annotation
    • 10.1145/1753783.1753784
    • Confidence-based stopping criteria for active learning for data annotation. Zhu J, Wang H, Hovy E, Ma M, ACM Transactions on Speech and Language Processing (TSLP) 2010 6 3 1 24 10.1145/1753783.1753784
    • (2010) ACM Transactions on Speech and Language Processing (TSLP) , vol.6 , Issue.3 , pp. 1-24
    • Zhu, J.1    Wang, H.2    Hovy, E.3    Ma, M.4
  • 12
    • 41549115181 scopus 로고    scopus 로고
    • Sample size planning for statistical power and accuracy in parameter estimation
    • 10.1146/annurev.psych.59.103006.093735 17937603
    • Sample size planning for statistical power and accuracy in parameter estimation. Maxwell SE, Kelley K, Rausch JR, Annual review of psychology 2008 59 537 563 10.1146/annurev.psych.59.103006.093735 17937603
    • (2008) Annual Review of Psychology , vol.59 , pp. 537-563
    • Maxwell, S.E.1    Kelley, K.2    Rausch, J.R.3
  • 14
    • 0035640845 scopus 로고    scopus 로고
    • Some practical guidelines for effective sample size determination
    • 10.1198/000313001317098149
    • Some Practical Guidelines for Effective Sample Size Determination. Lenth RV, The American Statistician 2001 55 3 187 193 10.1198/000313001317098149
    • (2001) The American Statistician , vol.55 , Issue.3 , pp. 187-193
    • Lenth, R.V.1
  • 15
    • 0031923902 scopus 로고    scopus 로고
    • Power and sample size calculations for stochastic cost-effectiveness analysis
    • DOI 10.1177/0272989X9801800210
    • Power and Sample Size Calculations for Stochastic Cost-Effectiveness Analysis. Briggs AH, Gray AM, Medical Decision Making 1998 18 2 81 S92 10.1177/0272989X9801800210 9566469 (Pubitemid 28175945)
    • (1998) Medical Decision Making , vol.18 , Issue.2 SUPPL.
    • Briggs, A.H.1    Gray, A.M.2
  • 16
    • 0842329096 scopus 로고    scopus 로고
    • Estimating sample size in clinical studies: Basic methodological principles
    • 15008067
    • Estimating sample size in clinical studies: basic methodological principles. Carneiro AV, Rev Port Cardiol 2003 22 12 1513 1521 15008067
    • (2003) Rev Port Cardiol , vol.22 , Issue.12 , pp. 1513-1521
    • Carneiro, A.V.1
  • 18
    • 77955097924 scopus 로고    scopus 로고
    • CGHpower: Exploring sample size calculations for chromosomal copy number experiments
    • 10.1186/1471-2105-11-331 20565750
    • CGHpower: exploring sample size calculations for chromosomal copy number experiments. Scheinin I, Ferreira JA, Knuutila S, Meijer GA, van de Wiel MA, Ylstra B, BMC bioinformatics 2010 11 331 10.1186/1471-2105-11-331 20565750
    • (2010) BMC Bioinformatics , vol.11 , pp. 331
    • Scheinin, I.1    Ferreira, J.A.2    Knuutila, S.3    Meijer, G.A.4    Van De Wiel, M.A.5    Ylstra, B.6
  • 19
    • 0037407912 scopus 로고    scopus 로고
    • Sample size estimation: How many individuals should be studied?
    • DOI 10.1148/radiol.2272012051
    • Sample size estimation: how many individuals should be studied? Eng J, Radiology 2003 227 2 309 313 10.1148/radiol.2272012051 12732691 (Pubitemid 36514740)
    • (2003) Radiology , vol.227 , Issue.2 , pp. 309-313
    • Eng, J.1
  • 20
    • 4243185841 scopus 로고    scopus 로고
    • Sample size and power estimation for studies with health related quality of life outcomes: A comparison of four methods using the SF-36
    • DOI 10.1186/1477-7525-2-26
    • Sample size and power estimation for studies with health related quality of life outcomes: a comparison of four methods using the SF-36. Walters SJ, Health and quality of life outcomes 2004 2 26 10.1186/1477-7525-2-26 15161494 (Pubitemid 39112005)
    • (2004) Health and Quality of Life Outcomes , vol.2 , pp. 26
    • Walters, S.J.1
  • 21
    • 10944228043 scopus 로고    scopus 로고
    • Sample size/power calculation for case-cohort studies
    • DOI 10.1111/j.0006-341X.2004.00257.x
    • Sample size/power calculation for case-cohort studies. Cai J, Zeng D, Biometrics 2004 60 4 1015 1024 10.1111/j.0006-341X.2004.00257.x 15606422 (Pubitemid 40019043)
    • (2004) Biometrics , vol.60 , Issue.4 , pp. 1015-1024
    • Cai, J.1    Zeng, D.2
  • 22
    • 0036326635 scopus 로고    scopus 로고
    • Sample size requirements for accurate estimation of squared semi-partial correlation coefficients
    • Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients. Algina J, Moulder BC, Moser BK, Multivariate Behavioral Research 2002 37 1 37 57 10.1207/S15327906MBR3701-02 (Pubitemid 36630369)
    • (2002) Multivariate Behavioral Research , vol.37 , Issue.1 , pp. 37-57
    • Algina, J.1    Moulder, B.C.2    Moser, B.K.3
  • 24
    • 0024444162 scopus 로고
    • Sample size determination for confidence intervals on the population mean and on the difference between two population means
    • Sample Size Determination for Confidence Intervals on the Population Mean and on the Difference Between Two Population Means. Beal SL, Biometrics 1989 45 3 969 977 10.2307/2531696 2790131 (Pubitemid 19249334)
    • (1989) Biometrics , vol.45 , Issue.3 , pp. 969-977
    • Beal, S.L.1
  • 25
    • 0041833611 scopus 로고    scopus 로고
    • A new method for choosing sample size for confidence interval-based inferences
    • DOI 10.1111/1541-0420.00068
    • A New Method for Choosing Sample Size for Confidence Interval-Based Inferences. Jiroutek MR, Muller KE, Kupper LL, Stewart PW, Biometrics 2003 59 3 580 590 10.1111/1541-0420.00068 14601759 (Pubitemid 37093397)
    • (2003) Biometrics , vol.59 , Issue.3 , pp. 580-590
    • Jiroutek, M.R.1    Muller, K.E.2    Kupper, L.L.3    Stewart, P.W.4
  • 28
    • 84975489216 scopus 로고    scopus 로고
    • Predicting the relationship between the size of training sample and the predictive power of classifiers
    • Springer Berlin/Heidelberg 10.1007/978-3-540-30134-9-71
    • Predicting the Relationship Between the Size of Training Sample and the Predictive Power of Classifiers. Boonyanunta N, Zeephongsekul P, Knowledge-Based Intelligent Information and Engineering Systems Springer Berlin/Heidelberg 2004 3215 529 535 10.1007/978-3-540-30134-9-71
    • (2004) Knowledge-Based Intelligent Information and Engineering Systems , vol.3215 , pp. 529-535
    • Boonyanunta, N.1    Zeephongsekul, P.2
  • 29
    • 76749113312 scopus 로고    scopus 로고
    • Learning curves in classification with microarray data
    • 10.1053/j.seminoncol.2009.12.002 20172367
    • Learning Curves in Classification With Microarray Data. Hess KR, Wei C, Seminars in oncology 2010 37 1 65 68 10.1053/j.seminoncol.2009.12.002 20172367
    • (2010) Seminars in Oncology , vol.37 , Issue.1 , pp. 65-68
    • Hess, K.R.1    Wei, C.2
  • 32
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machines in the drug discovery process
    • 10.1021/ci025620t 12653536
    • Active learning with support vector machines in the drug discovery process. Warmuth MK, Liao J, Ratsch G, Mathieson M, Putta S, Lemmen C, J Chem Inf Comput Sci 2003 43 2 667 673 10.1021/ci025620t 12653536
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.2 , pp. 667-673
    • Warmuth, M.K.1    Liao, J.2    Ratsch, G.3    Mathieson, M.4    Putta, S.5    Lemmen, C.6
  • 33
    • 10044229345 scopus 로고    scopus 로고
    • Active learning with support vector machine applied to gene expression data for cancer classification
    • 10.1021/ci049810a 15554662
    • Active learning with support vector machine applied to gene expression data for cancer classification. Liu Y, J Chem Inf Comput Sci 2004 44 6 1936 1941 10.1021/ci049810a 15554662
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.6 , pp. 1936-1941
    • Liu, Y.1
  • 37
    • 84989431553 scopus 로고
    • The learning curve: Historical review and comprehensive survey
    • 10.1111/j.1540-5915.1979.tb00026.x
    • The Learning Curve: Historical Review and Comprehensive Survey. Yelle LE, Decision Sciences 1979 10 2 302 327 10.1111/j.1540-5915.1979.tb00026.x
    • (1979) Decision Sciences , vol.10 , Issue.2 , pp. 302-327
    • Yelle, L.E.1
  • 39
    • 84976747891 scopus 로고
    • Algorithm 573: NL2SOL - An Adaptive Nonlinear Least-Squares Algorithm [E4]
    • 10.1145/355958.355966
    • Algorithm 573: NL2SOL-An Adaptive Nonlinear Least-Squares Algorithm [E4]. Dennis JE, Gay DM, Welsch RE, ACM Transactions on Mathematical Software 1981 7 3 369 383 10.1145/355958.355966
    • (1981) ACM Transactions on Mathematical Software , vol.7 , Issue.3 , pp. 369-383
    • Dennis, J.E.1    Gay, D.M.2    Welsch, R.E.3
  • 42
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Support Vector Machine Active Learning with Applications to Text Classification. Tong S, Koller D, Journal of Machine Learning Research 2001 2 45 66
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.