-
1
-
-
0038237368
-
Estimating dataset size requirements for classifying DNA microarray data
-
DOI 10.1089/106652703321825928
-
Estimating dataset size requirements for classifying DNA microarray data. Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, Golub TR, Mesirov JP, J Comput Biol 2003 10 2 119 142 10.1089/106652703321825928 12804087 (Pubitemid 36623535)
-
(2003)
Journal of Computational Biology
, vol.10
, Issue.2
, pp. 119-142
-
-
Mukherjee, S.1
Tamayo, P.2
Rogers, S.3
Rifkin, R.4
Engle, A.5
Campbell, C.6
Golub, T.R.7
Mesirov, J.P.8
-
2
-
-
40749107034
-
How large a training set is needed to develop a classifier for microarray data?
-
DOI 10.1158/1078-0432.CCR-07-0443
-
How Large a Training Set is Needed to Develop a Classifier for Microarray Data? Dobbin K, Zhao Y, Simon R, Clinical Cancer Research 2008 14 1 108 114 10.1158/1078-0432.CCR-07-0443 18172259 (Pubitemid 351377984)
-
(2008)
Clinical Cancer Research
, vol.14
, Issue.1
, pp. 108-114
-
-
Dobbin, K.K.1
Zhao, Y.2
Simon, R.M.3
-
3
-
-
33750578696
-
Impact of sample size on the performance of multiple-model pharmacokinetic simulations
-
DOI 10.1128/AAC.00337-06
-
Impact of sample size on the performance of multiple-model pharmacokinetic simulations. Tam VH, Kabbara S, Yeh RF, Leary RH, Antimicrobial agents and chemotherapy 2006 50 11 3950 3952 10.1128/AAC.00337-06 16954312 (Pubitemid 44684925)
-
(2006)
Antimicrobial Agents and Chemotherapy
, vol.50
, Issue.11
, pp. 3950-3952
-
-
Tam, V.H.1
Kabbara, S.2
Yeh, R.F.3
Leary, R.H.4
-
4
-
-
66749184049
-
Effects of sample size on robustness and prediction accuracy of a prognostic gene signature
-
10.1186/1471-2105-10-147 19445687
-
Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. Kim S-Y, BMC bioinformatics 2009 10 1 147 10.1186/1471-2105-10-147 19445687
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 147
-
-
Kim, S.-Y.1
-
6
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Text Classification from Labeled and Unlabeled Documents using EM. Nigam K, McCallum AK, Thrun S, Mitchell T, Mach Learn 2000 39 2-3 103 134 (Pubitemid 30594822)
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 103-134
-
-
Nigam, K.1
Mccallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
7
-
-
40149096977
-
A stopping criterion for active learning
-
DOI 10.1016/j.csl.2007.12.001, PII S088523080700068X
-
A stopping criterion for active learning. Vlachos A, Computer Speech and Language 2008 22 3 295 312 10.1016/j.csl.2007.12.001 (Pubitemid 351329454)
-
(2008)
Computer Speech and Language
, vol.22
, Issue.3
, pp. 295-312
-
-
Vlachos, A.1
-
9
-
-
77953755634
-
Confidence-based stopping criteria for active learning for data annotation
-
10.1145/1753783.1753784
-
Confidence-based stopping criteria for active learning for data annotation. Zhu J, Wang H, Hovy E, Ma M, ACM Transactions on Speech and Language Processing (TSLP) 2010 6 3 1 24 10.1145/1753783.1753784
-
(2010)
ACM Transactions on Speech and Language Processing (TSLP)
, vol.6
, Issue.3
, pp. 1-24
-
-
Zhu, J.1
Wang, H.2
Hovy, E.3
Ma, M.4
-
12
-
-
41549115181
-
Sample size planning for statistical power and accuracy in parameter estimation
-
10.1146/annurev.psych.59.103006.093735 17937603
-
Sample size planning for statistical power and accuracy in parameter estimation. Maxwell SE, Kelley K, Rausch JR, Annual review of psychology 2008 59 537 563 10.1146/annurev.psych.59.103006.093735 17937603
-
(2008)
Annual Review of Psychology
, vol.59
, pp. 537-563
-
-
Maxwell, S.E.1
Kelley, K.2
Rausch, J.R.3
-
14
-
-
0035640845
-
Some practical guidelines for effective sample size determination
-
10.1198/000313001317098149
-
Some Practical Guidelines for Effective Sample Size Determination. Lenth RV, The American Statistician 2001 55 3 187 193 10.1198/000313001317098149
-
(2001)
The American Statistician
, vol.55
, Issue.3
, pp. 187-193
-
-
Lenth, R.V.1
-
15
-
-
0031923902
-
Power and sample size calculations for stochastic cost-effectiveness analysis
-
DOI 10.1177/0272989X9801800210
-
Power and Sample Size Calculations for Stochastic Cost-Effectiveness Analysis. Briggs AH, Gray AM, Medical Decision Making 1998 18 2 81 S92 10.1177/0272989X9801800210 9566469 (Pubitemid 28175945)
-
(1998)
Medical Decision Making
, vol.18
, Issue.2 SUPPL.
-
-
Briggs, A.H.1
Gray, A.M.2
-
16
-
-
0842329096
-
Estimating sample size in clinical studies: Basic methodological principles
-
15008067
-
Estimating sample size in clinical studies: basic methodological principles. Carneiro AV, Rev Port Cardiol 2003 22 12 1513 1521 15008067
-
(2003)
Rev Port Cardiol
, vol.22
, Issue.12
, pp. 1513-1521
-
-
Carneiro, A.V.1
-
18
-
-
77955097924
-
CGHpower: Exploring sample size calculations for chromosomal copy number experiments
-
10.1186/1471-2105-11-331 20565750
-
CGHpower: exploring sample size calculations for chromosomal copy number experiments. Scheinin I, Ferreira JA, Knuutila S, Meijer GA, van de Wiel MA, Ylstra B, BMC bioinformatics 2010 11 331 10.1186/1471-2105-11-331 20565750
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 331
-
-
Scheinin, I.1
Ferreira, J.A.2
Knuutila, S.3
Meijer, G.A.4
Van De Wiel, M.A.5
Ylstra, B.6
-
19
-
-
0037407912
-
Sample size estimation: How many individuals should be studied?
-
DOI 10.1148/radiol.2272012051
-
Sample size estimation: how many individuals should be studied? Eng J, Radiology 2003 227 2 309 313 10.1148/radiol.2272012051 12732691 (Pubitemid 36514740)
-
(2003)
Radiology
, vol.227
, Issue.2
, pp. 309-313
-
-
Eng, J.1
-
20
-
-
4243185841
-
Sample size and power estimation for studies with health related quality of life outcomes: A comparison of four methods using the SF-36
-
DOI 10.1186/1477-7525-2-26
-
Sample size and power estimation for studies with health related quality of life outcomes: a comparison of four methods using the SF-36. Walters SJ, Health and quality of life outcomes 2004 2 26 10.1186/1477-7525-2-26 15161494 (Pubitemid 39112005)
-
(2004)
Health and Quality of Life Outcomes
, vol.2
, pp. 26
-
-
Walters, S.J.1
-
21
-
-
10944228043
-
Sample size/power calculation for case-cohort studies
-
DOI 10.1111/j.0006-341X.2004.00257.x
-
Sample size/power calculation for case-cohort studies. Cai J, Zeng D, Biometrics 2004 60 4 1015 1024 10.1111/j.0006-341X.2004.00257.x 15606422 (Pubitemid 40019043)
-
(2004)
Biometrics
, vol.60
, Issue.4
, pp. 1015-1024
-
-
Cai, J.1
Zeng, D.2
-
22
-
-
0036326635
-
Sample size requirements for accurate estimation of squared semi-partial correlation coefficients
-
Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients. Algina J, Moulder BC, Moser BK, Multivariate Behavioral Research 2002 37 1 37 57 10.1207/S15327906MBR3701-02 (Pubitemid 36630369)
-
(2002)
Multivariate Behavioral Research
, vol.37
, Issue.1
, pp. 37-57
-
-
Algina, J.1
Moulder, B.C.2
Moser, B.K.3
-
24
-
-
0024444162
-
Sample size determination for confidence intervals on the population mean and on the difference between two population means
-
Sample Size Determination for Confidence Intervals on the Population Mean and on the Difference Between Two Population Means. Beal SL, Biometrics 1989 45 3 969 977 10.2307/2531696 2790131 (Pubitemid 19249334)
-
(1989)
Biometrics
, vol.45
, Issue.3
, pp. 969-977
-
-
Beal, S.L.1
-
25
-
-
0041833611
-
A new method for choosing sample size for confidence interval-based inferences
-
DOI 10.1111/1541-0420.00068
-
A New Method for Choosing Sample Size for Confidence Interval-Based Inferences. Jiroutek MR, Muller KE, Kupper LL, Stewart PW, Biometrics 2003 59 3 580 590 10.1111/1541-0420.00068 14601759 (Pubitemid 37093397)
-
(2003)
Biometrics
, vol.59
, Issue.3
, pp. 580-590
-
-
Jiroutek, M.R.1
Muller, K.E.2
Kupper, L.L.3
Stewart, P.W.4
-
27
-
-
0012253104
-
-
San Francisco, CA. USA. Morgan Kaufmann Publishers
-
Learning Curves: Asymptotic Values and Rate of Convergence. Cortes C, Jackel LD, Solla SA, Vapnik V, Denker JS, San Francisco, CA. USA.: Morgan Kaufmann Publishers 1994 VI
-
(1994)
Learning Curves: Asymptotic Values and Rate of Convergence
, vol.6
-
-
Cortes, C.1
Jackel, L.D.2
Solla, S.A.3
Vapnik, V.4
Denker, J.S.5
-
28
-
-
84975489216
-
Predicting the relationship between the size of training sample and the predictive power of classifiers
-
Springer Berlin/Heidelberg 10.1007/978-3-540-30134-9-71
-
Predicting the Relationship Between the Size of Training Sample and the Predictive Power of Classifiers. Boonyanunta N, Zeephongsekul P, Knowledge-Based Intelligent Information and Engineering Systems Springer Berlin/Heidelberg 2004 3215 529 535 10.1007/978-3-540-30134-9-71
-
(2004)
Knowledge-Based Intelligent Information and Engineering Systems
, vol.3215
, pp. 529-535
-
-
Boonyanunta, N.1
Zeephongsekul, P.2
-
29
-
-
76749113312
-
Learning curves in classification with microarray data
-
10.1053/j.seminoncol.2009.12.002 20172367
-
Learning Curves in Classification With Microarray Data. Hess KR, Wei C, Seminars in oncology 2010 37 1 65 68 10.1053/j.seminoncol.2009.12.002 20172367
-
(2010)
Seminars in Oncology
, vol.37
, Issue.1
, pp. 65-68
-
-
Hess, K.R.1
Wei, C.2
-
31
-
-
0002515248
-
Efficient progressive sampling
-
San Diego, California, United States: ACM
-
Efficient progressive sampling. Provost F, Jensen D, Oates T, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining San Diego, California, United States: ACM 1999
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
-
Provost, F.1
Jensen, D.2
Oates, T.3
-
32
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
10.1021/ci025620t 12653536
-
Active learning with support vector machines in the drug discovery process. Warmuth MK, Liao J, Ratsch G, Mathieson M, Putta S, Lemmen C, J Chem Inf Comput Sci 2003 43 2 667 673 10.1021/ci025620t 12653536
-
(2003)
J Chem Inf Comput Sci
, vol.43
, Issue.2
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
Ratsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
33
-
-
10044229345
-
Active learning with support vector machine applied to gene expression data for cancer classification
-
10.1021/ci049810a 15554662
-
Active learning with support vector machine applied to gene expression data for cancer classification. Liu Y, J Chem Inf Comput Sci 2004 44 6 1936 1941 10.1021/ci049810a 15554662
-
(2004)
J Chem Inf Comput Sci
, vol.44
, Issue.6
, pp. 1936-1941
-
-
Liu, Y.1
-
36
-
-
46449099520
-
Positive sample enhanced angle-diversity active learning for SVM based image retrieval
-
Positive Sample Enhanced Angle-Diversity Active Learning for SVM Based Image Retrieval. Yuan J, Zhou X, Zhang J, Wang M, Zhang Q, Wang W, Shi B, Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2007): 2007 2007 2202 2205
-
(2007)
Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2007): 2007
, pp. 2202-2205
-
-
Yuan, J.1
Zhou, X.2
Zhang, J.3
Wang, M.4
Zhang, Q.5
Wang, W.6
Shi, B.7
-
37
-
-
84989431553
-
The learning curve: Historical review and comprehensive survey
-
10.1111/j.1540-5915.1979.tb00026.x
-
The Learning Curve: Historical Review and Comprehensive Survey. Yelle LE, Decision Sciences 1979 10 2 302 327 10.1111/j.1540-5915.1979.tb00026.x
-
(1979)
Decision Sciences
, vol.10
, Issue.2
, pp. 302-327
-
-
Yelle, L.E.1
-
38
-
-
0035037085
-
Statistical assessment of the learning curves of health technologies
-
Statistical assessment of the learning curves of health technologies. Ramsay C, Grant A, Wallace S, Garthwaite P, Monk A, Russell I, Health Technology Assessment 2001 5 12
-
(2001)
Health Technology Assessment
, vol.5
, Issue.12
-
-
Ramsay, C.1
Grant, A.2
Wallace, S.3
Garthwaite, P.4
Monk, A.5
Russell, I.6
-
39
-
-
84976747891
-
Algorithm 573: NL2SOL - An Adaptive Nonlinear Least-Squares Algorithm [E4]
-
10.1145/355958.355966
-
Algorithm 573: NL2SOL-An Adaptive Nonlinear Least-Squares Algorithm [E4]. Dennis JE, Gay DM, Welsch RE, ACM Transactions on Mathematical Software 1981 7 3 369 383 10.1145/355958.355966
-
(1981)
ACM Transactions on Mathematical Software
, vol.7
, Issue.3
, pp. 369-383
-
-
Dennis, J.E.1
Gay, D.M.2
Welsch, R.E.3
-
42
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Support Vector Machine Active Learning with Applications to Text Classification. Tong S, Koller D, Journal of Machine Learning Research 2001 2 45 66
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
|