메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages 23-32

Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning

Author keywords

Computer aided detection; Computer aided diagnosis; Deep learning; Image processing; Machine learning; Pulmonary image analysis

Indexed keywords

ALGORITHM; BRONCHOSCOPY; CHRONIC OBSTRUCTIVE LUNG DISEASE; COMPUTER AIDED DESIGN; COMPUTER ASSISTED TOMOGRAPHY; DEEP LEARNING; HUMAN; IMAGE ANALYSIS; IMAGE PROCESSING; IMAGING SOFTWARE; INFORMATION PROCESSING; LIMIT OF QUANTITATION; MACHINE LEARNING; MEASUREMENT ACCURACY; MEASUREMENT PRECISION; REVIEW; THORAX RADIOGRAPHY; DIAGNOSTIC IMAGING; LUNG TUMOR; PROCEDURES;

EID: 85013130699     PISSN: 18650333     EISSN: 18650341     Source Type: Journal    
DOI: 10.1007/s12194-017-0394-5     Document Type: Review
Times cited : (158)

References (62)
  • 1
    • 0013869566 scopus 로고
    • Computer-aided diagnosis in radiology. a research plan
    • COI: 1:STN:280:DyaF287ht1Omsg%3D%3D, PID: 5910559
    • Lodwick GS. Computer-aided diagnosis in radiology. a research plan. Invest Radiol. 1966;1:72–80.
    • (1966) Invest Radiol , vol.1 , pp. 72-80
    • Lodwick, G.S.1
  • 2
    • 0008186537 scopus 로고
    • The coding of Roentgen images for computer analysis as applied to lung cancer
    • COI: 1:STN:280:DyaF2c%2FhtFektg%3D%3D, PID: 14053755
    • Lodwick GS, Keats TE, Dorst JP. The coding of Roentgen images for computer analysis as applied to lung cancer. Radiology. 1963;81:185–200.
    • (1963) Radiology , vol.81 , pp. 185-200
    • Lodwick, G.S.1    Keats, T.E.2    Dorst, J.P.3
  • 4
    • 34247171748 scopus 로고    scopus 로고
    • Computer-aided diagnosis in medical imaging: historical review, current status and future potential
    • PID: 17349778
    • Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph. 2007;31:198–211.
    • (2007) Comput Med Imaging Graph , vol.31 , pp. 198-211
    • Doi, K.1
  • 9
    • 71849117060 scopus 로고    scopus 로고
    • Computer-aided diagnosis in chest radiography: beyond nodules
    • PID: 19604661
    • van Ginneken B, Hogeweg L, Prokop M. Computer-aided diagnosis in chest radiography: beyond nodules. Eur J Radiol. 2009;72:226–30.
    • (2009) Eur J Radiol , vol.72 , pp. 226-230
    • van Ginneken, B.1    Hogeweg, L.2    Prokop, M.3
  • 10
    • 84883170976 scopus 로고    scopus 로고
    • Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review
    • PID: 23956328
    • van Rikxoort EM, van Ginneken B. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys Med Biol. 2013;58:R187–220.
    • (2013) Phys Med Biol , vol.58 , pp. R187-R220
    • van Rikxoort, E.M.1    van Ginneken, B.2
  • 11
    • 81555205692 scopus 로고    scopus 로고
    • Computer-aided diagnosis: how to move from the laboratory to the clinic
    • PID: 22095995
    • van Ginneken B, Schaefer-Prokop CM, Prokop M. Computer-aided diagnosis: how to move from the laboratory to the clinic. Radiology. 2011;261(3):719–32.
    • (2011) Radiology , vol.261 , Issue.3 , pp. 719-732
    • van Ginneken, B.1    Schaefer-Prokop, C.M.2    Prokop, M.3
  • 12
    • 0019152630 scopus 로고
    • Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • COI: 1:STN:280:DyaL3c7nsFKntw%3D%3D, PID: 7370364
    • Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern. 1980;36:193–202.
    • (1980) Biol Cybern , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 13
    • 0029546663 scopus 로고
    • Artificial convolution neural network techniques and applications for lung nodule detection
    • COI: 1:STN:280:DC%2BD1c%2FmtlOiug%3D%3D, PID: 18215875
    • Lo S-CB, Lou S-LA, Lin J-S, Freedman MT, Chien MV, Mun SK. Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging. 1995;14:711–8.
    • (1995) IEEE Trans Med Imaging , vol.14 , pp. 711-718
    • Lo, S.-C.B.1    Lou, S.-L.A.2    Lin, J.-S.3    Freedman, M.T.4    Chien, M.V.5    Mun, S.K.6
  • 14
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 15
  • 17
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • PID: 25462637
    • Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.
    • (2015) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 18
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • COI: 1:CAS:528:DC%2BC2MXht1WlurzP, PID: 26017442
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 22
    • 84968661778 scopus 로고    scopus 로고
    • Deep learning in medical imaging: overview and future promise of an exciting new technique
    • Greenspan H, Summers RM, van Ginneken B. Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Summers, R.M.2    van Ginneken, B.3
  • 25
    • 33646416744 scopus 로고    scopus 로고
    • Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification
    • PID: 16689264
    • Loog M, van Ginneken B. Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Trans Med Imaging. 2006;25:602–11.
    • (2006) IEEE Trans Med Imaging , vol.25 , pp. 602-611
    • Loog, M.1    van Ginneken, B.2
  • 26
    • 84893268603 scopus 로고    scopus 로고
    • L. Hogeweg, C. Mol, P. A. de Jong, and B. van Ginneken. Rib suppression in chest radiographs to improve classification of textural abnormalities. In: Medical imaging, vol 7624 of proceedings of the SPIE; 2010. pp. 76240Y1–Y6.
    • L. Hogeweg, C. Mol, P. A. de Jong, and B. van Ginneken. Rib suppression in chest radiographs to improve classification of textural abnormalities. In: Medical imaging, vol 7624 of proceedings of the SPIE; 2010. pp. 76240Y1–Y6.
  • 27
    • 84887850073 scopus 로고    scopus 로고
    • Suppression of translucent elongated structures: applications in chest radiography
    • PID: 23880041
    • Hogeweg L, Sánchez CI, van Ginneken B. Suppression of translucent elongated structures: applications in chest radiography. IEEE Trans Med Imaging. 2013;32:2099–113.
    • (2013) IEEE Trans Med Imaging. , vol.32 , pp. 2099-2113
    • Hogeweg, L.1    Sa´nchez, C.I.2    van Ginneken, B.3
  • 28
    • 33645673568 scopus 로고    scopus 로고
    • Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN)
    • PID: 16608057
    • Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006;25:406–16.
    • (2006) IEEE Trans Med Imaging , vol.25 , pp. 406-416
    • Suzuki, K.1    Abe, H.2    MacMahon, H.3    Doi, K.4
  • 29
    • 13944267171 scopus 로고    scopus 로고
    • False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network
    • PID: 15721596
    • Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol. 2005;12:191–201.
    • (2005) Acad Radiol , vol.12 , pp. 191-201
    • Suzuki, K.1    Shiraishi, J.2    Abe, H.3    MacMahon, H.4    Doi, K.5
  • 30
    • 0038710369 scopus 로고    scopus 로고
    • Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography
    • PID: 12906178
    • Suzuki K, Armato SG, Li F, Sone S, Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys. 2003;30:1602–17.
    • (2003) Med Phys , vol.30 , pp. 1602-1617
    • Suzuki, K.1    Armato, S.G.2    Li, F.3    Sone, S.4    Doi, K.5
  • 31
    • 33751340816 scopus 로고    scopus 로고
    • Filter learning: application to suppression of bony structures from chest radiographs
    • COI: 1:STN:280:DC%2BD28jgtV2huw%3D%3D, PID: 16859953
    • Loog M, van Ginneken B, Schilham AMR. Filter learning: application to suppression of bony structures from chest radiographs. Med Image Anal. 2006;10:826–40.
    • (2006) Med Image Anal , vol.10 , pp. 826-840
    • Loog, M.1    van Ginneken, B.2    Schilham, A.M.R.3
  • 32
    • 84984611707 scopus 로고    scopus 로고
    • Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain
    • PID: 27589577
    • Yang W, Chen Y, Liu Y, Zhong L, Qin G, Lu Z, Feng Q, Chen W. Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med Image Anal. 2016;35:421–33.
    • (2016) Med Image Anal , vol.35 , pp. 421-433
    • Yang, W.1    Chen, Y.2    Liu, Y.3    Zhong, L.4    Qin, G.5    Lu, Z.6    Feng, Q.7    Chen, W.8
  • 33
    • 84867911435 scopus 로고    scopus 로고
    • Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy
    • PID: 22929331
    • de Hoop B, van Ginneken B, Gietema H, Prokop M. Pulmonary perifissural nodules on CT scans: rapid growth is not a predictor of malignancy. Radiology. 2012;265:611–6.
    • (2012) Radiology , vol.265 , pp. 611-616
    • de Hoop, B.1    van Ginneken, B.2    Gietema, H.3    Prokop, M.4
  • 34
    • 84856608008 scopus 로고    scopus 로고
    • A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema
    • PID: 21984417
    • van Rikxoort EM, Goldin JG, Abtin F, Kim HJ, Lu P, van Ginneken B, Shaw G, Galperin-Aizenberg M, Brown MS. A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema. Eur Radiol. 2012;22:302–9.
    • (2012) Eur Radiol , vol.22 , pp. 302-309
    • van Rikxoort, E.M.1    Goldin, J.G.2    Abtin, F.3    Kim, H.J.4    Lu, P.5    van Ginneken, B.6    Shaw, G.7    Galperin-Aizenberg, M.8    Brown, M.S.9
  • 35
    • 37549032039 scopus 로고    scopus 로고
    • Supervised enhancement filters: application to fissure detection in chest CT scans
    • PID: 18270056
    • van Rikxoort EM, van Ginneken B, Klik M, Prokop M. Supervised enhancement filters: application to fissure detection in chest CT scans. IEEE Trans Med Imaging. 2008;27:1–10.
    • (2008) IEEE Trans Med Imaging , vol.27 , pp. 1-10
    • van Rikxoort, E.M.1    van Ginneken, B.2    Klik, M.3    Prokop, M.4
  • 36
    • 33646448176 scopus 로고    scopus 로고
    • Bu¨low T, Blaffert T. Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data
    • Wiemker R, Bu¨low T, Blaffert T. Unsupervised extraction of the pulmonary interlobar fissures from high resolution thoracic CT data. In: Computer assisted radiology and surgery, vol 1281 of international congress series; 2005. pp. 1121–26.
    • In: Computer assisted radiology and surgery, vol 1281 of international congress series , vol.2005 , pp. 1121-1126
    • Wiemker, R.1
  • 37
    • 17444363420 scopus 로고    scopus 로고
    • Vessel tree reconstruction in thoracic CT scans with application to nodule detection
    • PID: 15822807
    • Agam G, Armato SG III, Wu C. Vessel tree reconstruction in thoracic CT scans with application to nodule detection. IEEE Trans Med Imaging. 2005;24:486–99.
    • (2005) IEEE Trans Med Imaging , vol.24 , pp. 486-499
    • Agam, G.1    Armato, S.G.2    Wu, C.3
  • 43
    • 77955572447 scopus 로고    scopus 로고
    • Vessel-guided airway tree segmentation: a voxel classification approach
    • PID: 20395163
    • Lo P, Sporring J, Ashraf H, Pedersen JJH, de Bruijne M. Vessel-guided airway tree segmentation: a voxel classification approach. Med Image Anal. 2010;14:527–38.
    • (2010) Med Image Anal , vol.14 , pp. 527-538
    • Lo, P.1    Sporring, J.2    Ashraf, H.3    Pedersen, J.J.H.4    de Bruijne, M.5
  • 45
    • 68849111865 scopus 로고    scopus 로고
    • A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification
    • COI: 1:STN:280:DC%2BD1MrntFelsw%3D%3D, PID: 19646913
    • Murphy K, van Ginneken B, Schilham AMR, de Hoop BJ, Gietema HA, Prokop M. A large scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Med Image Anal. 2009;13(5):757–70.
    • (2009) Med Image Anal , vol.13 , Issue.5 , pp. 757-770
    • Murphy, K.1    van Ginneken, B.2    Schilham, A.M.R.3    de Hoop, B.J.4    Gietema, H.A.5    Prokop, M.6
  • 49
    • 84988847853 scopus 로고    scopus 로고
    • Bergtholdt M, Wiemker R, Klinder T. Pulmonary nodule detection using a cascaded SVM classifier. In: Medical imaging, vol 9785 of proceedings of the SPIE; 2016. p. 978513
    • Bergtholdt M, Wiemker R, Klinder T. Pulmonary nodule detection using a cascaded SVM classifier. In: Medical imaging, vol 9785 of proceedings of the SPIE; 2016. p. 978513.
  • 50
    • 85029484388 scopus 로고    scopus 로고
    • So´nora-Mengana A, Carlos Garc´ıa-Naranjo J, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ETh, Scholten L, Snoeren M, Lopez Torres E, Vandemeulebroucke J, Walasek N, Zuidhof GCA, van Ginneken B, Jacobs C. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images
    • Setio AAA, Traverso A, de Bel T, Berens MSN, van den Bogaard C, Cerello P, Chen H, Dou Q, Fantacci ME, Geurts B, van der Gugten R, Heng PA, Jansen B, de Kasten MMJ, Kotov V, Yu-Hung Lin J, Manders JTMC, So´nora-Mengana A, Carlos Garc´ıa-Naranjo J, Prokop M, Saletta M, Schaefer-Prokop CM, Scholten ETh, Scholten L, Snoeren M, Lopez Torres E, Vandemeulebroucke J, Walasek N, Zuidhof GCA, van Ginneken B, Jacobs C. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. 2016. arXiv:1612.08012.
    • (2016) LUNA16 challenge , pp. 08012
    • Setio, A.A.A.1    Traverso, A.2    de Bel, T.3    Berens, M.S.N.4    van den Bogaard, C.5    Cerello, P.6    Chen, H.7    Dou, Q.8    Fantacci, M.E.9    Geurts, B.10    van der Gugten, R.11    Heng, P.A.12    Jansen, B.13    de Kasten, M.M.J.14    Kotov, V.15    Yu-Hung Lin, J.16    Manders, J.T.M.C.17
  • 51
    • 0032981748 scopus 로고    scopus 로고
    • A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results
    • COI: 1:STN:280:DyaK1MzmsF2nsw%3D%3D, PID: 10436888
    • McNitt-Gray MF, Hart EM, Wyckoff N, Sayre JW, Goldin JG, Aberle DR. A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: preliminary results. Med Phys. 1999;26:880–8.
    • (1999) Med Phys , vol.26 , pp. 880-888
    • McNitt-Gray, M.F.1    Hart, E.M.2    Wyckoff, N.3    Sayre, J.W.4    Goldin, J.G.5    Aberle, D.R.6
  • 52
    • 84878237804 scopus 로고    scopus 로고
    • Machine learning in computer-aided diagnosis of the thorax and colon in CT: a survey
    • Suzuki K. Machine learning in computer-aided diagnosis of the thorax and colon in CT: a survey. IEICE Trans Inf Syst. 2013;96:772–83.
    • (2013) IEICE Trans Inf Syst , vol.96 , pp. 772-783
    • Suzuki, K.1
  • 53
    • 25144514408 scopus 로고    scopus 로고
    • Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
    • PID: 16156352
    • Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005;24:1138–50.
    • (2005) IEEE Trans Med Imaging , vol.24 , pp. 1138-1150
    • Suzuki, K.1    Li, F.2    Sone, S.3    Doi, K.4
  • 56
    • 33645697952 scopus 로고    scopus 로고
    • Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans
    • PID: 16608058
    • Kuhnigk JM, Dicken V, Bornemann L, Bakai A, Wormanns D, Krass S, Peitgen HO. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Trans Med Imaging. 2006;25:417–34.
    • (2006) IEEE Trans Med Imaging , vol.25 , pp. 417-434
    • Kuhnigk, J.M.1    Dicken, V.2    Bornemann, L.3    Bakai, A.4    Wormanns, D.5    Krass, S.6    Peitgen, H.O.7
  • 57
    • 84921047235 scopus 로고    scopus 로고
    • Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans
    • COI: 1:STN:280:DC%2BC2Mvmslentw%3D%3D, PID: 25591989
    • Lassen BC, Jacobs C, Kuhnigk J-M, van Ginneken B, van Rikxoort EM. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans. Phys Med Biol. 2015;60:1307–23.
    • (2015) Phys Med Biol , vol.60 , pp. 1307-1323
    • Lassen, B.C.1    Jacobs, C.2    Kuhnigk, J.-M.3    van Ginneken, B.4    van Rikxoort, E.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.