-
3
-
-
84982803482
-
Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images
-
Lu X, Yang Y, Wu F, et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 2016; 95:e3973
-
(2016)
Medicine (Baltimore)
, vol.95
, pp. e3973
-
-
Lu, X.1
Yang, Y.2
Wu, F.3
-
4
-
-
84969855998
-
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
-
Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 2016; 43:2835-2844
-
(2016)
Med Phys
, vol.43
, pp. 2835-2844
-
-
Korfiatis, P.1
Kline, T.L.2
Coufalova, L.3
-
5
-
-
84937801713
-
Machine learning: Trends, perspectives, and prospects
-
Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015; 349:255-260
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
6
-
-
85016480070
-
-
December 14,. Accessed August 4, 2016
-
Ericson G, Franks L, Gronlund CJ, Rohrer B. Machine learning algorithm cheat sheet for Microsoft Azure machine learning studio. Microsoft Azure website. azure.microsoft.com/en-us/documentation/ articles/machine-learning-algorithm-cheat-sheet. December 14, 2016. Accessed August 4, 2016
-
(2016)
Machine Learning Algorithm Cheat Sheet for Microsoft Azure Machine Learning Studio
-
-
Ericson, G.1
Franks, L.2
Gronlund, C.J.3
Rohrer, B.4
-
7
-
-
84978165575
-
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
-
Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA 2016; 113:7900-7905
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 7900-7905
-
-
Eklund, A.1
Nichols, T.E.2
Knutsson, H.3
-
10
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
Essa I, Kang SB, Pollefeys M, eds. Piscataway, NJ: IEEE
-
Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Essa I, Kang SB, Pollefeys M, eds. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009:248-255
-
(2009)
2009 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
-
11
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Pereira F, Burges CJ, Bottou L, Weinberger KQ, eds. Red Hook, NY: Curran
-
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, eds. Advances in neural information processing systems. Vol. 25. Red Hook, NY: Curran 2012:1097-1105
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
12
-
-
84937508363
-
How transferable are features in deep neural networks?
-
Ghahramani Z, Welling MW, Cortes C, Lawrence ND, Weinberger KQ, eds. Red Hook, NY: Curran
-
Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Ghahramani Z, Welling MW, Cortes C, Lawrence ND, Weinberger KQ, eds. Advances in neural information processing systems. Vol 27. Red Hook, NY: Curran, 2014:3320-3328
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
13
-
-
84978969270
-
Progress in fully automated abdominal CT interpretation
-
Summers RM. Progress in fully automated abdominal CT interpretation. AJR 2016; 207:67-79
-
(2016)
AJR
, vol.207
, pp. 67-79
-
-
Summers, R.M.1
-
14
-
-
79551563631
-
Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification
-
Yao J, Dwyer A, Summers RM, Mollura DJ. Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification. Acad Radiol 2011; 18:306-314
-
(2011)
Acad Radiol
, vol.18
, pp. 306-314
-
-
Yao, J.1
Dwyer, A.2
Summers, R.M.3
Mollura, D.J.4
-
15
-
-
84974555742
-
Discrimination of breast cancer with microcalcifications on mammography by deep learning
-
Wang J, Yang X, Cai H, et al. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep 2016; 6:27327
-
(2016)
Sci Rep
, vol.6
, pp. 27327
-
-
Wang, J.1
Yang, X.2
Cai, H.3
-
16
-
-
84991063753
-
Highthroughput classification of radiographs using deep convolutional neural networks
-
Oct 11 [Epub ahead of print]
-
Rajkomar A, Lingam S, Taylor AG, et al. Highthroughput classification of radiographs using deep convolutional neural networks. J Digit Imaging; 2016 Oct 11 [Epub ahead of print]
-
(2016)
J Digit Imaging
-
-
Rajkomar, A.1
Lingam, S.2
Taylor, A.G.3
-
17
-
-
84964292829
-
Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
-
Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016; 6:24454
-
(2016)
Sci Rep
, vol.6
, pp. 24454
-
-
Cheng, J.Z.1
Ni, D.2
Chou, Y.H.3
|