메뉴 건너뛰기




Volumn 208, Issue 4, 2017, Pages 754-760

Implementing machine learning in radiology practice and research

Author keywords

Artificial intelligence; Imaging; Informatics; Machine learning; Statistics

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; CLINICAL PRACTICE; CLINICAL RESEARCH; COMPUTER AIDED DESIGN; COMPUTER ANALYSIS; CONVOLUTIONAL NEURAL NETWORK; IMAGE ANALYSIS; IMAGE PROCESSING; LEGAL ASPECT; MACHINE LEARNING; PRACTICE GUIDELINE; RADIOLOGIST; RADIOLOGY; REVIEW; SOFTWARE; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE; AUTOMATED PATTERN RECOGNITION; COMPUTER ASSISTED DIAGNOSIS; HUMAN; IMAGE ENHANCEMENT; MEDICAL RESEARCH; ORGANIZATION AND MANAGEMENT; PROCEDURES; REPRODUCIBILITY; SENSITIVITY AND SPECIFICITY; UNITED STATES;

EID: 85016471320     PISSN: 0361803X     EISSN: 15463141     Source Type: Journal    
DOI: 10.2214/AJR.16.17224     Document Type: Review
Times cited : (240)

References (17)
  • 3
    • 84982803482 scopus 로고    scopus 로고
    • Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images
    • Lu X, Yang Y, Wu F, et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore) 2016; 95:e3973
    • (2016) Medicine (Baltimore) , vol.95 , pp. e3973
    • Lu, X.1    Yang, Y.2    Wu, F.3
  • 4
    • 84969855998 scopus 로고    scopus 로고
    • MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
    • Korfiatis P, Kline TL, Coufalova L, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 2016; 43:2835-2844
    • (2016) Med Phys , vol.43 , pp. 2835-2844
    • Korfiatis, P.1    Kline, T.L.2    Coufalova, L.3
  • 5
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: Trends, perspectives, and prospects
    • Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015; 349:255-260
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 7
    • 84978165575 scopus 로고    scopus 로고
    • Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
    • Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci USA 2016; 113:7900-7905
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 7900-7905
    • Eklund, A.1    Nichols, T.E.2    Knutsson, H.3
  • 8
    • 84887512712 scopus 로고    scopus 로고
    • Three-dimensional solid texture analysis in biomedical imaging: Review and opportunities
    • Depeursinge A, Foncubierta-Rodriguez A, Van Ville D, Müller H. Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 2014; 18:176-196
    • (2014) Med Image Anal , vol.18 , pp. 176-196
    • Depeursinge, A.1    Foncubierta-Rodriguez, A.2    Van Ville, D.3    Müller, H.4
  • 10
    • 85198028989 scopus 로고    scopus 로고
    • ImageNet: A large-scale hierarchical image database
    • Essa I, Kang SB, Pollefeys M, eds. Piscataway, NJ: IEEE
    • Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Essa I, Kang SB, Pollefeys M, eds. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009:248-255
    • (2009) 2009 IEEE Conference on Computer Vision and Pattern Recognition , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3
  • 11
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Pereira F, Burges CJ, Bottou L, Weinberger KQ, eds. Red Hook, NY: Curran
    • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJ, Bottou L, Weinberger KQ, eds. Advances in neural information processing systems. Vol. 25. Red Hook, NY: Curran 2012:1097-1105
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 12
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • Ghahramani Z, Welling MW, Cortes C, Lawrence ND, Weinberger KQ, eds. Red Hook, NY: Curran
    • Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Ghahramani Z, Welling MW, Cortes C, Lawrence ND, Weinberger KQ, eds. Advances in neural information processing systems. Vol 27. Red Hook, NY: Curran, 2014:3320-3328
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 3320-3328
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 13
    • 84978969270 scopus 로고    scopus 로고
    • Progress in fully automated abdominal CT interpretation
    • Summers RM. Progress in fully automated abdominal CT interpretation. AJR 2016; 207:67-79
    • (2016) AJR , vol.207 , pp. 67-79
    • Summers, R.M.1
  • 14
    • 79551563631 scopus 로고    scopus 로고
    • Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification
    • Yao J, Dwyer A, Summers RM, Mollura DJ. Computer-aided diagnosis of pulmonary infections using texture analysis and support vector machine classification. Acad Radiol 2011; 18:306-314
    • (2011) Acad Radiol , vol.18 , pp. 306-314
    • Yao, J.1    Dwyer, A.2    Summers, R.M.3    Mollura, D.J.4
  • 15
    • 84974555742 scopus 로고    scopus 로고
    • Discrimination of breast cancer with microcalcifications on mammography by deep learning
    • Wang J, Yang X, Cai H, et al. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep 2016; 6:27327
    • (2016) Sci Rep , vol.6 , pp. 27327
    • Wang, J.1    Yang, X.2    Cai, H.3
  • 16
    • 84991063753 scopus 로고    scopus 로고
    • Highthroughput classification of radiographs using deep convolutional neural networks
    • Oct 11 [Epub ahead of print]
    • Rajkomar A, Lingam S, Taylor AG, et al. Highthroughput classification of radiographs using deep convolutional neural networks. J Digit Imaging; 2016 Oct 11 [Epub ahead of print]
    • (2016) J Digit Imaging
    • Rajkomar, A.1    Lingam, S.2    Taylor, A.G.3
  • 17
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 2016; 6:24454
    • (2016) Sci Rep , vol.6 , pp. 24454
    • Cheng, J.Z.1    Ni, D.2    Chou, Y.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.