-
1
-
-
79961108629
-
Reduced lung-cancer mortality with low-dose computed tomographic screening
-
Aberle, D. R., et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. New England Journal of Medicine 365, 395-409 (2011).
-
(2011)
New England Journal of Medicine
, vol.365
, pp. 395-409
-
-
Aberle, D.R.1
-
2
-
-
84908573929
-
Benefits and harms of computed tomography lung cancer screening strategies: A comparative modeling study for the U. S. Preventive services task force
-
de Koning, H. J., et al. Benefits and harms of computed tomography lung cancer screening strategies: A comparative modeling study for the U. S. preventive services task force. Annals of Internal Medicine (2013).
-
(2013)
Annals of Internal Medicine
-
-
De Koning, H.J.1
-
3
-
-
77951647196
-
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery
-
Messay, T., Hardie, R. C., Rogers, S. K. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Medical Image Analysis 14, 390-406 (2010).
-
(2010)
Medical Image Analysis
, vol.14
, pp. 390-406
-
-
Messay, T.1
Hardie, R.C.2
Rogers, S.K.3
-
4
-
-
84892452298
-
Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images
-
Jacobs, C., et al. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Medical Image Analysis 18, 374-384 (2014).
-
(2014)
Medical Image Analysis
, vol.18
, pp. 374-384
-
-
Jacobs, C.1
-
5
-
-
84941072949
-
Automatic detection of large pulmonary solid nodules in thoracic CT images
-
Setio, A. A. A., Jacobs, C., Gelderblom, J., van Ginneken, B. Automatic detection of large pulmonary solid nodules in thoracic CT images. Medical Physics 42, 5642-5653 (2015).
-
(2015)
Medical Physics
, vol.42
, pp. 5642-5653
-
-
Setio, A.A.A.1
Jacobs, C.2
Gelderblom, J.3
Van Ginneken, B.4
-
6
-
-
84968638584
-
Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
-
Setio, A. A. A., et al. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE Transactions on Medical Imaging 35, 1160-1169 (2016).
-
(2016)
IEEE Transactions On Medical Imaging
, vol.35
, pp. 1160-1169
-
-
Setio, A.A.A.1
-
7
-
-
84883373200
-
Probability of cancer in pulmonary nodules detected on first screening CT
-
McWilliams, A., et al. Probability of cancer in pulmonary nodules detected on first screening CT. New England Journal of Medicine 369, 910-919 (2013).
-
(2013)
New England Journal of Medicine
, vol.369
, pp. 910-919
-
-
McWilliams, A.1
-
8
-
-
84867911435
-
Pulmonary perifissural nodules on CT scans: Rapid growth is not a predictor of malignancy
-
de Hoop, B., van Ginneken, B., Gietema, H., Prokop, M. Pulmonary perifissural nodules on CT scans: Rapid growth is not a predictor of malignancy. Radiology 265, 611-616 (2012).
-
(2012)
Radiology
, vol.265
, pp. 611-616
-
-
De Hoop, B.1
Van Ginneken, B.2
Gietema, H.3
Prokop, M.4
-
9
-
-
0036109223
-
CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules
-
Henschke, C. I., et al. CT screening for lung cancer: Frequency and significance of part-solid and nonsolid nodules. American Journal of Roentgenology 178, 1053-1057 (2002).
-
(2002)
American Journal of Roentgenology
, vol.178
, pp. 1053-1057
-
-
Henschke, C.I.1
-
10
-
-
84948732335
-
Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management
-
van Riel, S. J., et al. Observer variability for classification of pulmonary nodules on low-dose CT images and its effect on nodule management. Radiology 277, 863-871 (2015).
-
(2015)
Radiology
, vol.277
, pp. 863-871
-
-
Van Riel, S.J.1
-
11
-
-
84923650021
-
Solid, part-solid, or non-solid: Classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system
-
Jacobs, C., et al. Solid, part-solid, or non-solid: Classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system. Investigative Radiology 50, 168-173 (2015).
-
(2015)
Investigative Radiology
, vol.50
, pp. 168-173
-
-
Jacobs, C.1
-
12
-
-
84876194732
-
Toward precise pulmonary nodule descriptors for nodule type classification
-
Farag, A., Elhabian, S., Graham, J., Farag, A., Falk, R. Toward precise pulmonary nodule descriptors for nodule type classification. Medical Image Computing and Computer-Assisted Intervention 13, 626-633 (2010).
-
(2010)
Medical Image Computing and Computer-Assisted Intervention
, vol.13
, pp. 626-633
-
-
Farag, A.1
Elhabian, S.2
Graham, J.3
Farag, A.4
Falk, R.5
-
13
-
-
84926435768
-
Bag of frequencies: A descriptor of pulmonary nodules in computed tomography images
-
Ciompi, F., et al. Bag of frequencies: A descriptor of pulmonary nodules in computed tomography images. IEEE Transactions on Medical Imaging 34, 1-12 (2015).
-
(2015)
IEEE Transactions On Medical Imaging
, vol.34
, pp. 1-12
-
-
Ciompi, F.1
-
14
-
-
84948798628
-
Automatic detection of spiculation of pulmonary nodules in computed tomography images
-
Ciompi, F., et al. Automatic detection of spiculation of pulmonary nodules in computed tomography images. In Medical Imaging, of Proceedings of the SPIE vol. 9414, (2015).
-
(2015)
Medical Imaging of Proceedings of the SPIE
, vol.9414
-
-
Ciompi, F.1
-
15
-
-
84943752367
-
Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box
-
Ciompi, F., et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis 26, 195-202 (2015).
-
(2015)
Medical Image Analysis
, vol.26
, pp. 195-202
-
-
Ciompi, F.1
-
16
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G. Deep learning. Nature 521, 436-444 (2015).
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
17
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks 61, 85-117 (2015).
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
18
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278-2324 (1998).
-
(1998)
Proceedings of the IEEE
, vol.86
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, 1097-1105 (2012).
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
20
-
-
85083951635
-
OverFeat: Integrated recognition, localization and detection using convolutional networks
-
ArXiv: 1312. 6229
-
Sermanet, P., et al. OverFeat: Integrated recognition, localization and detection using convolutional networks. In International Conference on Learning Representations (ICLR 2014) ArXiv: 1312. 6229 (2014).
-
(2014)
International Conference On Learning Representations (ICLR 2014)
-
-
Sermanet, P.1
-
21
-
-
84941122549
-
Going deeper with convolutions
-
Szegedy, C., et al. Going deeper with convolutions. arXiv:14094842v1 (2014).
-
(2014)
ArXiv:14094842v1
-
-
Szegedy, C.1
-
22
-
-
84943812643
-
Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans
-
van Ginneken, B., Setio, A. A. A., Jacobs, C., Ciompi, F. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In IEEE International Symposium on Biomedical Imaging 286-289 (2015).
-
(2015)
IEEE International Symposium On Biomedical Imaging
, pp. 286-289
-
-
Van Ginneken, B.1
Setio, A.A.A.2
Jacobs, C.3
Ciompi, F.4
-
24
-
-
84968662241
-
-
Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network 35, 1207-1216 (2016).
-
(2016)
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
, vol.35
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
25
-
-
84859295557
-
Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial
-
Pastorino, U., et al. Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. European Journal of Cancer Prevention 21, 308-315 (2012).
-
(2012)
European Journal of Cancer Prevention
, vol.21
, pp. 308-315
-
-
Pastorino, U.1
-
26
-
-
67651159241
-
The Danish randomized lung cancer CT screening trial-overall design and results of the prevalence round
-
Pedersen, J. H., et al. The Danish randomized lung cancer CT screening trial-overall design and results of the prevalence round. Journal of Thoracic Oncology 4, 608-614 (2009).
-
(2009)
Journal of Thoracic Oncology
, vol.4
, pp. 608-614
-
-
Pedersen, J.H.1
-
27
-
-
33645697952
-
Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans
-
Kuhnigk, J. M., et al. Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Transactions on Medical Imaging 25, 417-434 (2006).
-
(2006)
IEEE Transactions On Medical Imaging
, vol.25
, pp. 417-434
-
-
Kuhnigk, J.M.1
-
28
-
-
84941425888
-
Predictive accuracy of the pancan lung cancer risk prediction model-external validation based on CT from the danish lung cancer screening trial
-
Winkler Wille, M. M., et al. Predictive accuracy of the pancan lung cancer risk prediction model-external validation based on CT from the danish lung cancer screening trial. European Radiology 25, 3093-3099 (2015).
-
(2015)
European Radiology
, vol.25
, pp. 3093-3099
-
-
Winkler Wille, M.M.1
-
30
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv:14091556 (2014).
-
(2014)
ArXiv: 14091556
-
-
Simonyan, K.1
Zisserman, A.2
-
33
-
-
85083951076
-
ADAM: A method for stochastic optimization
-
Kingma, D., Ba, J. ADAM: A method for stochastic optimization. arXiv:14126980 (2015).
-
(2015)
ArXiv: 14126980
-
-
Kingma, D.1
Ba, J.2
-
34
-
-
80053446757
-
An analysis of single-layer networks in unsupervised feature learning
-
Coates, A., Lee, H., Ng, A. Y. An analysis of single-layer networks in unsupervised feature learning. In Aistats (2011).
-
(2011)
Aistats
-
-
Coates, A.1
Lee, H.2
Ng, A.Y.3
|