-
1
-
-
84924981384
-
Intracellular detection of viral nucleic acids
-
Sparrer KM, Gack MU. 2015. Intracellular detection of viral nucleic acids. Curr Opin Microbiol 26:1-9. https://doi.org/10.1016/j.mib.2015.03.001
-
(2015)
Curr Opin Microbiol
, vol.26
, pp. 1-9
-
-
Sparrer, K.M.1
Gack, M.U.2
-
2
-
-
77950343791
-
Pattern recognition receptors and inflammation
-
Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell 140:805-820. https://doi.org/10.1016/j.cell.2010.01.022
-
(2010)
Cell
, vol.140
, pp. 805-820
-
-
Takeuchi, O.1
Akira, S.2
-
3
-
-
84908192059
-
Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates
-
Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis ESC. 2014. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature 514:372-375. https://doi.org/10.1038/nature13590
-
(2014)
Nature
, vol.514
, pp. 372-375
-
-
Goubau, D.1
Schlee, M.2
Deddouche, S.3
Pruijssers, A.J.4
Zillinger, T.5
Goldeck, M.6
Schuberth, C.7
Van der Veen, A.G.8
Fujimura, T.9
Rehwinkel, J.10
Iskarpatyoti, J.A.11
Barchet, W.12
Ludwig, J.13
Dermody, T.S.14
Hartmann, G.15
Reis, E.S.C.16
-
4
-
-
33750976374
-
5'-Triphosphate RNA is the ligand for RIG-I
-
Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994-997. https://doi .org/10.1126/science.1132505
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
Ellegast, J.2
Kim, S.3
Brzozka, K.4
Jung, A.5
Kato, H.6
Poeck, H.7
Akira, S.8
Conzelmann, K.K.9
Schlee, M.10
Endres, S.11
Hartmann, G.12
-
5
-
-
33646342149
-
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
-
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105. https://doi.org/10.1038/nature04734
-
(2006)
Nature
, vol.441
, pp. 101-105
-
-
Kato, H.1
Takeuchi, O.2
Sato, S.3
Yoneyama, M.4
Yamamoto, M.5
Matsui, K.6
Uematsu, S.7
Jung, A.8
Kawai, T.9
Ishii, K.J.10
Yamaguchi, O.11
Otsu, K.12
Tsujimura, T.13
Koh, C.S.14
Reise Sousa, C.15
Matsuura, Y.16
Fujita, T.17
Akira, S.18
-
6
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
-
Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314:997-1001. https://doi.org/10 .1126/science.1132998
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.P.3
Naslund, T.I.4
Liljestrom, P.5
Weber, F.6
Reise Sousa, C.7
-
7
-
-
84937763934
-
Innate immune recognition of DNA: a recent history
-
Dempsey A, Bowie AG. 2015. Innate immune recognition of DNA: a recent history. Virology 479-480:146-152
-
(2015)
Virology
, vol.479-480
, pp. 146-152
-
-
Dempsey, A.1
Bowie, A.G.2
-
8
-
-
33745288750
-
Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway
-
Paz S, Sun Q, Nakhaei P, Romieu-Mourez R, Goubau D, Julkunen I, Lin R, Hiscott J. 2006. Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell Mol Biol (Noisy-le-Grand) 52:17-28
-
(2006)
Cell Mol Biol (Noisy-le-Grand)
, vol.52
, pp. 17-28
-
-
Paz, S.1
Sun, Q.2
Nakhaei, P.3
Romieu-Mourez, R.4
Goubau, D.5
Julkunen, I.6
Lin, R.7
Hiscott, J.8
-
9
-
-
27144440523
-
IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction
-
Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. 2005. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated type I interferon induction. Nat Immunol 6:981-988. https://doi.org/10 .1038/ni1243
-
(2005)
Nat Immunol
, vol.6
, pp. 981-988
-
-
Kawai, T.1
Takahashi, K.2
Sato, S.3
Coban, C.4
Kumar, H.5
Kato, H.6
Ishii, K.J.7
Takeuchi, O.8
Akira, S.9
-
10
-
-
27144440476
-
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
-
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167-1172. https://doi.org/10.1038/nature04193
-
(2005)
Nature
, vol.437
, pp. 1167-1172
-
-
Meylan, E.1
Curran, J.2
Hofmann, K.3
Moradpour, D.4
Binder, M.5
Bartenschlager, R.6
Tschopp, J.7
-
11
-
-
24144461689
-
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFkappaB and IRF 3
-
Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFkappaB and IRF 3. Cell 122:669-682. https://doi.org/10.1016/j.cell.2005 .08.012
-
(2005)
Cell
, vol.122
, pp. 669-682
-
-
Seth, R.B.1
Sun, L.2
Ea, C.K.3
Chen, Z.J.4
-
12
-
-
24944538819
-
VISA is an adapter protein required for virus-triggered IFN-beta signaling
-
Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727-740. https://doi.org/10.1016/j.molcel.2005.08.014
-
(2005)
Mol Cell
, vol.19
, pp. 727-740
-
-
Xu, L.G.1
Wang, Y.Y.2
Han, K.J.3
Li, L.Y.4
Zhai, Z.5
Shu, H.B.6
-
13
-
-
85006778548
-
Posttranslational control of intracellular pathogen sensing pathways
-
Chiang C, Gack MU. 2017. Posttranslational control of intracellular pathogen sensing pathways. Trends Immunol 38:39-52. https://doi.org/10 .1016/j.it.2016.10.008
-
(2017)
Trends Immunol
, vol.38
, pp. 39-52
-
-
Chiang, C.1
Gack, M.U.2
-
14
-
-
55949131282
-
Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction
-
Gack MU, Kirchhofer A, Shin YC, Inn KS, Liang C, Cui S, Myong S, Ha T, Hopfner KP, Jung JU. 2008. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A 105:16743-16748. https://doi.org/10.1073/ pnas.0804947105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 16743-16748
-
-
Gack, M.U.1
Kirchhofer, A.2
Shin, Y.C.3
Inn, K.S.4
Liang, C.5
Cui, S.6
Myong, S.7
Ha, T.8
Hopfner, K.P.9
Jung, J.U.10
-
15
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916-920. https://doi.org/10.1038/nature05732
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
Shin, Y.C.2
Joo, C.H.3
Urano, T.4
Liang, C.5
Sun, L.6
Takeuchi, O.7
Akira, S.8
Chen, Z.9
Inoue, S.10
Jung, J.U.11
-
16
-
-
84862994793
-
Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
-
Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, Grishin NV, Chen ZJ. 2012. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36: 959-973. https://doi.org/10.1016/j.immuni.2012.03.022
-
(2012)
Immunity
, vol.36
, pp. 959-973
-
-
Jiang, X.1
Kinch, L.N.2
Brautigam, C.A.3
Chen, X.4
Du, F.5
Grishin, N.V.6
Chen, Z.J.7
-
17
-
-
84899957213
-
Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
-
Peisley A, Wu B, Xu H, Chen ZJ, Hur S. 2014. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509: 110-114. https://doi.org/10.1038/nature13140
-
(2014)
Nature
, vol.509
, pp. 110-114
-
-
Peisley, A.1
Wu, B.2
Xu, H.3
Chen, Z.J.4
Hur, S.5
-
18
-
-
84978807214
-
Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway
-
Sanchez JG, Chiang JJ, Sparrer KM, Alam SL, Chi M, Roganowicz MD, Sankaran B, Gack MU, Pornillos O. 2016. Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep 16:1315-1325. https:// doi.org/10.1016/j.celrep.2016.06.070
-
(2016)
Cell Rep
, vol.16
, pp. 1315-1325
-
-
Sanchez, J.G.1
Chiang, J.J.2
Sparrer, K.M.3
Alam, S.L.4
Chi, M.5
Roganowicz, M.D.6
Sankaran, B.7
Gack, M.U.8
Pornillos, O.9
-
19
-
-
79251550124
-
Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction
-
Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K, Jung JU. 2011. Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction. Mol Cell 41:354-365. https://doi.org/10.1016/j.molcel.2010.12.029
-
(2011)
Mol Cell
, vol.41
, pp. 354-365
-
-
Inn, K.S.1
Gack, M.U.2
Tokunaga, F.3
Shi, M.4
Wong, L.Y.5
Iwai, K.6
Jung, J.U.7
-
20
-
-
84892428607
-
The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25
-
Pauli EK, Chan YK, Davis ME, Gableske S, Wang MK, Feister KF, Gack MU. 2014. The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25. Sci Signal 7:ra3. https:// doi.org/10.1126/scisignal.2004577
-
(2014)
Sci Signal
, vol.7
-
-
Pauli, E.K.1
Chan, Y.K.2
Davis, M.E.3
Gableske, S.4
Wang, M.K.5
Feister, K.F.6
Gack, M.U.7
-
21
-
-
69249213617
-
The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability
-
Vos RM, Altreuter J, White EA, Howley PM. 2009. The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability. J Virol 83:8885-8892. https://doi.org/10.1128/JVI.00605-09
-
(2009)
J Virol
, vol.83
, pp. 8885-8892
-
-
Vos, R.M.1
Altreuter, J.2
White, E.A.3
Howley, P.M.4
-
22
-
-
84875771195
-
The biology and life-cycle of human papillomaviruses
-
Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, Stanley MA. 2012. The biology and life-cycle of human papillomaviruses. Vaccine 30(Suppl 5):F55-F70. https://doi.org/10.1016/j.vaccine.2012.06.083
-
(2012)
Vaccine
, vol.30
, pp. F55-F70
-
-
Doorbar, J.1
Quint, W.2
Banks, L.3
Bravo, I.G.4
Stoler, M.5
Broker, T.R.6
Stanley, M.A.7
-
23
-
-
85023161082
-
Mechanisms and strategies of papillomavirus replication
-
McBride AA. 2017. Mechanisms and strategies of papillomavirus replication. Biol Chem 398:919-927. https://doi.org/10.1515/hsz-2017-0113
-
(2017)
Biol Chem
, vol.398
, pp. 919-927
-
-
McBride, A.A.1
-
24
-
-
84942103363
-
Human papillomaviruses: shared and distinct pathways for pathogenesis
-
Galloway DA, Laimins LA. 2015. Human papillomaviruses: shared and distinct pathways for pathogenesis. Curr Opin Virol 14:87-92. https://doi .org/10.1016/j.coviro.2015.09.001
-
(2015)
Curr Opin Virol
, vol.14
, pp. 87-92
-
-
Galloway, D.A.1
Laimins, L.A.2
-
25
-
-
84922595618
-
Pathogenesis of human papillomavirusassociated mucosal disease
-
Groves IJ, Coleman N. 2015. Pathogenesis of human papillomavirusassociated mucosal disease. J Pathol 235:527-538. https://doi.org/10 .1002/path.4496
-
(2015)
J Pathol
, vol.235
, pp. 527-538
-
-
Groves, I.J.1
Coleman, N.2
-
26
-
-
77954955259
-
Human papillomavirus oncoproteins: pathways to transformation
-
Moody CA, Laimins LA. 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550-560. https://doi.org/10 .1038/nrc2886
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 550-560
-
-
Moody, C.A.1
Laimins, L.A.2
-
27
-
-
0024804363
-
HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes
-
Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. 1989. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 8:3905-3910
-
(1989)
EMBO J
, vol.8
, pp. 3905-3910
-
-
Hawley-Nelson, P.1
Vousden, K.H.2
Hubbert, N.L.3
Lowy, D.R.4
Schiller, J.T.5
-
28
-
-
0024428508
-
The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes
-
Munger K, Phelps WC, Bubb V, Howley PM, Schlegel R. 1989. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 63:4417-4421
-
(1989)
J Virol
, vol.63
, pp. 4417-4421
-
-
Munger, K.1
Phelps, W.C.2
Bubb, V.3
Howley, P.M.4
Schlegel, R.5
-
29
-
-
0027358723
-
The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53
-
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495-505. https://doi.org/10.1016/0092-8674(93)90384-3
-
(1993)
Cell
, vol.75
, pp. 495-505
-
-
Scheffner, M.1
Huibregtse, J.M.2
Vierstra, R.D.3
Howley, P.M.4
-
30
-
-
0029834371
-
E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway
-
Boyer SN, Wazer DE, Band V. 1996. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620-4624
-
(1996)
Cancer Res
, vol.56
, pp. 4620-4624
-
-
Boyer, S.N.1
Wazer, D.E.2
Band, V.3
-
31
-
-
34848876774
-
Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor
-
Huh K, Zhou X, Hayakawa H, Cho JY, Libermann TA, Jin J, Harper JW, Munger K. 2007. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol 81: 9737-9747. https://doi.org/10.1128/JVI.00881-07
-
(2007)
J Virol
, vol.81
, pp. 9737-9747
-
-
Huh, K.1
Zhou, X.2
Hayakawa, H.3
Cho, J.Y.4
Libermann, T.A.5
Jin, J.6
Harper, J.W.7
Munger, K.8
-
32
-
-
84857128437
-
Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses
-
White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, Munger K, Harper JW, Howley PM. 2012. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A 109:E260-E267. https://doi .org/10.1073/pnas.1116776109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E260-E267
-
-
White, E.A.1
Sowa, M.E.2
Tan, M.J.3
Jeudy, S.4
Hayes, S.D.5
Santha, S.6
Munger, K.7
Harper, J.W.8
Howley, P.M.9
-
33
-
-
84994432469
-
High-risk human papillomavirus E7 proteins target PTPN14 for degradation
-
White EA, Munger K, Howley PM. 2016. High-risk human papillomavirus E7 proteins target PTPN14 for degradation. mBio 7:e01530-16. https:// doi.org/10.1128/mBio.01530-16
-
(2016)
mBio
, vol.7
-
-
White, E.A.1
Munger, K.2
Howley, P.M.3
-
34
-
-
70349240660
-
Human papillomaviruses and the interferon response
-
Beglin M, Melar-New M, Laimins L. 2009. Human papillomaviruses and the interferon response. J Interferon Cytokine Res 29:629-635. https:// doi.org/10.1089/jir.2009.0075
-
(2009)
J Interferon Cytokine Res
, vol.29
, pp. 629-635
-
-
Beglin, M.1
Melar-New, M.2
Laimins, L.3
-
35
-
-
85006852231
-
Manipulation of the innate immune response by human papillomaviruses
-
Hong S, Laimins LA. 2017. Manipulation of the innate immune response by human papillomaviruses. Virus Res 231:34-40. https://doi.org/10 .1016/j.virusres.2016.11.004
-
(2017)
Virus Res
, vol.231
, pp. 34-40
-
-
Hong, S.1
Laimins, L.A.2
-
36
-
-
85011085596
-
Evasion of host immune defenses by human papillomavirus
-
Westrich JA, Warren CJ, Pyeon D. 2017. Evasion of host immune defenses by human papillomavirus. Virus Res 231:21-33. https://doi.org/10.1016/ j.virusres.2016.11.023
-
(2017)
Virus Res
, vol.231
, pp. 21-33
-
-
Westrich, J.A.1
Warren, C.J.2
Pyeon, D.3
-
37
-
-
33847379522
-
TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16
-
Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, Mansour M, Vincent I, Gissmann L, Iftner T, Sideri M, Stubenrauch F, Tommasino M. 2007. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol 178: 3186-3197. https://doi.org/10.4049/jimmunol.178.5.3186
-
(2007)
J Immunol
, vol.178
, pp. 3186-3197
-
-
Hasan, U.A.1
Bates, E.2
Takeshita, F.3
Biliato, A.4
Accardi, R.5
Bouvard, V.6
Mansour, M.7
Vincent, I.8
Gissmann, L.9
Iftner, T.10
Sideri, M.11
Stubenrauch, F.12
Tommasino, M.13
-
38
-
-
84945353895
-
DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway
-
Lau L, Gray EE, Brunette RL, Stetson DB. 2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350: 568-571. https://doi.org/10.1126/science.aab3291
-
(2015)
Science
, vol.350
, pp. 568-571
-
-
Lau, L.1
Gray, E.E.2
Brunette, R.L.3
Stetson, D.B.4
-
39
-
-
79952687026
-
Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes
-
Karim R, Meyers C, Backendorf C, Ludigs K, Offringa R, van Ommen GJ, Melief CJ, van der Burg SH, Boer JM. 2011. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS One 6:e17848. https://doi.org/ 10.1371/journal.pone.0017848
-
(2011)
PLoS One
, vol.6
-
-
Karim, R.1
Meyers, C.2
Backendorf, C.3
Ludigs, K.4
Offringa, R.5
van Ommen, G.J.6
Melief, C.J.7
van der Burg, S.H.8
Boer, J.M.9
-
40
-
-
84967215091
-
Viral evasion of intracellular DNA and RNA sensing
-
Chan YK, Gack MU. 2016. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 14:360-373. https://doi.org/10.1038/nrmicro .2016.45
-
(2016)
Nat Rev Microbiol
, vol.14
, pp. 360-373
-
-
Chan, Y.K.1
Gack, M.U.2
-
41
-
-
84884350609
-
Papillomavirus E6 oncoproteins
-
Vande Pol SB, Klingelhutz AJ. 2013. Papillomavirus E6 oncoproteins. Virology 445:115-137. https://doi.org/10.1016/j.virol.2013.04.026
-
(2013)
Virology
, vol.445
, pp. 115-137
-
-
Vande Pol, S.B.1
Klingelhutz, A.J.2
-
42
-
-
21844464322
-
The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1
-
Hetfeld BK, Helfrich A, Kapelari B, Scheel H, Hofmann K, Guterman A, Glickman M, Schade R, Kloetzel PM, Dubiel W. 2005. The zinc finger of the CSN-associated deubiquitinating enzyme USP15 is essential to rescue the E3 ligase Rbx1. Curr Biol 15:1217-1221. https://doi.org/10.1016/ j.cub.2005.05.059
-
(2005)
Curr Biol
, vol.15
, pp. 1217-1221
-
-
Hetfeld, B.K.1
Helfrich, A.2
Kapelari, B.3
Scheel, H.4
Hofmann, K.5
Guterman, A.6
Glickman, M.7
Schade, R.8
Kloetzel, P.M.9
Dubiel, W.10
-
43
-
-
0026671476
-
Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation
-
Meyers C, Frattini MG, Hudson JB, Laimins LA. 1992. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257:971-973. https://doi.org/10.1126/science.1323879
-
(1992)
Science
, vol.257
, pp. 971-973
-
-
Meyers, C.1
Frattini, M.G.2
Hudson, J.B.3
Laimins, L.A.4
-
44
-
-
1942489261
-
Propagation, infection, and neutralization of authentic HPV16 virus
-
McLaughlin-Drubin ME, Christensen ND, Meyers C. 2004. Propagation, infection, and neutralization of authentic HPV16 virus. Virology 322: 213-219. https://doi.org/10.1016/j.virol.2004.02.011
-
(2004)
Virology
, vol.322
, pp. 213-219
-
-
McLaughlin-Drubin, M.E.1
Christensen, N.D.2
Meyers, C.3
-
45
-
-
84878509069
-
Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response
-
Karim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, Jha V, Offringa R, van Ommen GJ, Melief CJ, Guardavaccaro D, Boer JM, van der Burg SH. 2013. Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathog 9:e1003384. https://doi.org/10.1371/journal.ppat .1003384
-
(2013)
PLoS Pathog
, vol.9
-
-
Karim, R.1
Tummers, B.2
Meyers, C.3
Biryukov, J.L.4
Alam, S.5
Backendorf, C.6
Jha, V.7
Offringa, R.8
van Ommen, G.J.9
Melief, C.J.10
Guardavaccaro, D.11
Boer, J.M.12
van der Burg, S.H.13
-
46
-
-
0037142070
-
Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth
-
Urano T, Saito T, Tsukui T, Fujita M, Hosoi T, Muramatsu M, Ouchi Y, Inoue S. 2002. Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth. Nature 417:871-875. https://doi.org/10.1038/ nature00826
-
(2002)
Nature
, vol.417
, pp. 871-875
-
-
Urano, T.1
Saito, T.2
Tsukui, T.3
Fujita, M.4
Hosoi, T.5
Muramatsu, M.6
Ouchi, Y.7
Inoue, S.8
-
47
-
-
85025831507
-
Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-beta signaling
-
Sun N, Xue Y, Dai T, Li X, Zheng N. 2017. Tripartite motif containing 25 promotes proliferation and invasion of colorectal cancer cells through TGF-beta signaling. Biosci Rep 37:BSR20170805. https://doi.org/10.1042/ BSR20170805
-
(2017)
Biosci Rep
, vol.37
-
-
Sun, N.1
Xue, Y.2
Dai, T.3
Li, X.4
Zheng, N.5
-
48
-
-
84947040229
-
TRIM25 has a dual function in the p53/Mdm2 circuit
-
Zhang P, Elabd S, Hammer S, Solozobova V, Yan H, Bartel F, Inoue S, Henrich T, Wittbrodt J, Loosli F, Davidson G, Blattner C. 2015. TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene 34:5729-5738. https://doi.org/10.1038/onc.2015.21
-
(2015)
Oncogene
, vol.34
, pp. 5729-5738
-
-
Zhang, P.1
Elabd, S.2
Hammer, S.3
Solozobova, V.4
Yan, H.5
Bartel, F.6
Inoue, S.7
Henrich, T.8
Wittbrodt, J.9
Loosli, F.10
Davidson, G.11
Blattner, C.12
-
49
-
-
84954444968
-
TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-beta signaling
-
Zhu Z, Wang Y, Zhang C, Yu S, Zhu Q, Hou K, Yan B. 2016. TRIM25 blockade by RNA interference inhibited migration and invasion of gastric cancer cells through TGF-beta signaling. Sci Rep 6:19070. https://doi .org/10.1038/srep19070
-
(2016)
Sci Rep
, vol.6
-
-
Zhu, Z.1
Wang, Y.2
Zhang, C.3
Yu, S.4
Zhu, Q.5
Hou, K.6
Yan, B.7
-
50
-
-
85029373172
-
Immune evasion mechanisms of human papillomavirus: an update
-
Steinbach A, Riemer AB. 2017. Immune evasion mechanisms of human papillomavirus: an update. Int J Cancer 142:224-229. https://doi.org/10 .1002/ijc.31027
-
(2017)
Int J Cancer
, vol.142
, pp. 224-229
-
-
Steinbach, A.1
Riemer, A.B.2
-
51
-
-
84908335409
-
HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2-and CCL5-mediated recruit ment of mast cells
-
Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH, Grimbaldeston MA. 2014. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2-and CCL5-mediated recruit ment of mast cells. PLoS Pathog 10:e1004466. https://doi.org/10.1371/ journal.ppat.1004466
-
(2014)
PLoS Pathog
, vol.10
-
-
Bergot, A.S.1
Ford, N.2
Leggatt, G.R.3
Wells, J.W.4
Frazer, I.H.5
Grimbaldeston, M.A.6
-
52
-
-
0033998608
-
Microarray analysis identifies interferoninducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31
-
Chang YE, Laimins LA. 2000. Microarray analysis identifies interferoninducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 74:4174-4182. https://doi.org/10.1128/ JVI.74.9.4174-4182.2000
-
(2000)
J Virol
, vol.74
, pp. 4174-4182
-
-
Chang, Y.E.1
Laimins, L.A.2
-
53
-
-
0034629279
-
Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis
-
Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ. 2000. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 275:6764-6769
-
(2000)
J Biol Chem
, vol.275
, pp. 6764-6769
-
-
Park, J.S.1
Kim, E.J.2
Kwon, H.J.3
Hwang, E.S.4
Namkoong, S.E.5
Um, S.J.6
-
54
-
-
0034199617
-
Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1
-
Perea SE, Massimi P, Banks L. 2000. Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int J Mol Med 5:661-666
-
(2000)
Int J Mol Med
, vol.5
, pp. 661-666
-
-
Perea, S.E.1
Massimi, P.2
Banks, L.3
-
55
-
-
80055107582
-
High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression
-
Reiser J, Hurst J, Voges M, Krauss P, Munch P, Iftner T, Stubenrauch F. 2011. High-risk human papillomaviruses repress constitutive kappa interferon transcription via E6 to prevent pathogen recognition receptor and antiviral-gene expression. J Virol 85:11372-11380. https://doi.org/ 10.1128/JVI.05279-11
-
(2011)
J Virol
, vol.85
, pp. 11372-11380
-
-
Reiser, J.1
Hurst, J.2
Voges, M.3
Krauss, P.4
Munch, P.5
Iftner, T.6
Stubenrauch, F.7
-
56
-
-
0032128003
-
Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity
-
Ronco LV, Karpova AY, Vidal M, Howley PM. 1998. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 12:2061-2072. https://doi.org/10 .1101/gad.12.13.2061
-
(1998)
Genes Dev
, vol.12
, pp. 2061-2072
-
-
Ronco, L.V.1
Karpova, A.Y.2
Vidal, M.3
Howley, P.M.4
-
57
-
-
84878173821
-
Cytosolic sensing of viruses
-
Goubau D, Deddouche S, Reis e Sousa C. 2013. Cytosolic sensing of viruses. Immunity 38:855-869. https://doi.org/10.1016/j.immuni.2013.05 .007
-
(2013)
Immunity
, vol.38
, pp. 855-869
-
-
Goubau, D.1
Deddouche, S.2
Reise Sousa, C.3
-
58
-
-
85009274995
-
Crosstalk between cytoplasmic RIG-I and STING sensing pathways
-
Zevini A, Olagnier D, Hiscott J. 2017. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38:194-205. https://doi .org/10.1016/j.it.2016.12.004
-
(2017)
Trends Immunol
, vol.38
, pp. 194-205
-
-
Zevini, A.1
Olagnier, D.2
Hiscott, J.3
-
59
-
-
84990038856
-
RIG-I-mediated STING upregulation restricts herpes simplex virus 1 infection
-
Liu Y, Goulet ML, Sze A, Hadj SB, Belgnaoui SM, Lababidi RR, Zheng C, Fritz JH, Olagnier D, Lin R. 2016. RIG-I-mediated STING upregulation restricts herpes simplex virus 1 infection. J Virol 90:9406-9419. https:// doi.org/10.1128/JVI.00748-16
-
(2016)
J Virol
, vol.90
, pp. 9406-9419
-
-
Liu, Y.1
Goulet, M.L.2
Sze, A.3
Hadj, S.B.4
Belgnaoui, S.M.5
Lababidi, R.R.6
Zheng, C.7
Fritz, J.H.8
Olagnier, D.9
Lin, R.10
-
60
-
-
70349459734
-
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate
-
Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10: 1065-1072. https://doi.org/10.1038/ni.1779
-
(2009)
Nat Immunol
, vol.10
, pp. 1065-1072
-
-
Ablasser, A.1
Bauernfeind, F.2
Hartmann, G.3
Latz, E.4
Fitzgerald, K.A.5
Hornung, V.6
-
61
-
-
68049092912
-
RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
-
Chiu YH, Macmillan JB, Chen ZJ. 2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576-591. https://doi.org/10.1016/j.cell.2009.06.015
-
(2009)
Cell
, vol.138
, pp. 576-591
-
-
Chiu, Y.H.1
Macmillan, J.B.2
Chen, Z.J.3
-
62
-
-
59849100923
-
Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene-like receptors, which synergize to induce type I interferon production
-
Rasmussen SB, Jensen SB, Nielsen C, Quartin E, Kato H, Chen ZJ, Silverman RH, Akira S, Paludan SR. 2009. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene-like receptors, which synergize to induce type I interferon production. J Gen Virol 90:74-78. https://doi.org/10.1099/vir.0.005389-0
-
(2009)
J Gen Virol
, vol.90
, pp. 74-78
-
-
Rasmussen, S.B.1
Jensen, S.B.2
Nielsen, C.3
Quartin, E.4
Kato, H.5
Chen, Z.J.6
Silverman, R.H.7
Akira, S.8
Paludan, S.R.9
-
63
-
-
85006141582
-
A viral deamidase targets the helicase domain of RIG-I to block RNA-induced activation
-
Zhao J, Zeng Y, Xu S, Chen J, Shen G, Yu C, Knipe D, Yuan W, Peng J, Xu W, Zhang C, Xia Z, Feng P. 2016. A viral deamidase targets the helicase domain of RIG-I to block RNA-induced activation. Cell Host Microbe 20:770-784. https://doi.org/10.1016/j.chom.2016.10.011
-
(2016)
Cell Host Microbe
, vol.20
, pp. 770-784
-
-
Zhao, J.1
Zeng, Y.2
Xu, S.3
Chen, J.4
Shen, G.5
Yu, C.6
Knipe, D.7
Yuan, W.8
Peng, J.9
Xu, W.10
Zhang, C.11
Xia, Z.12
Feng, P.13
-
64
-
-
85035083737
-
Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity
-
Chiang JJ, Sparrer KMJ, van Gent M, Lassig C, Huang T, Osterrieder N, Hopfner KP, Gack MU. 2017. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol 19: 53-62. https://doi.org/10.1038/s41590-017-0005-y
-
(2017)
Nat Immunol
, vol.19
, pp. 53-62
-
-
Chiang, J.J.1
Sparrer, K.M.J.2
van Gent, M.3
Lassig, C.4
Huang, T.5
Osterrieder, N.6
Hopfner, K.P.7
Gack, M.U.8
-
65
-
-
84903903537
-
Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes
-
White EA, Walther J, Javanbakht H, Howley PM. 2014. Genus beta human papillomavirus E6 proteins vary in their effects on the transactivation of p53 target genes. J Virol 88:8201-8212. https://doi.org/10.1128/JVI .01197-14
-
(2014)
J Virol
, vol.88
, pp. 8201-8212
-
-
White, E.A.1
Walther, J.2
Javanbakht, H.3
Howley, P.M.4
-
66
-
-
84870716604
-
Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity
-
White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW, Howley PM. 2012. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol 86:13174-13186. https://doi.org/10 .1128/JVI.02172-12
-
(2012)
J Virol
, vol.86
, pp. 13174-13186
-
-
White, E.A.1
Kramer, R.E.2
Tan, M.J.3
Hayes, S.D.4
Harper, J.W.5
Howley, P.M.6
-
67
-
-
84978863697
-
CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections
-
van Diemen FR, Kruse EM, Hooykaas MJ, Bruggeling CE, Schurch AC, van Ham PM, Imhof SM, Nijhuis M, Wiertz EJ, Lebbink RJ. 2016. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog 12:e1005701. https://doi.org/10.1371/journal .ppat.1005701
-
(2016)
PLoS Pathog
, vol.12
-
-
van Diemen, F.R.1
Kruse, E.M.2
Hooykaas, M.J.3
Bruggeling, C.E.4
Schurch, A.C.5
van Ham, P.M.6
Imhof, S.M.7
Nijhuis, M.8
Wiertz, E.J.9
Lebbink, R.J.10
-
68
-
-
84863741533
-
Activation of capdependent translation by mucosal human papillomavirus E6 proteins is dependent on the integrity of the LXXLL binding motif
-
Spangle JM, Ghosh-Choudhury N, Munger K. 2012. Activation of capdependent translation by mucosal human papillomavirus E6 proteins is dependent on the integrity of the LXXLL binding motif. J Virol 86: 7466-7472. https://doi.org/10.1128/JVI.00487-12
-
(2012)
J Virol
, vol.86
, pp. 7466-7472
-
-
Spangle, J.M.1
Ghosh-Choudhury, N.2
Munger, K.3
-
69
-
-
77949422543
-
Phosphorylation-mediated negative regulation of RIG-I antiviral activity
-
Gack MU, Nistal-Villan E, Inn KS, Garcia-Sastre A, Jung JU. 2010. Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol 84:3220-3229. https://doi.org/10.1128/JVI.02241-09
-
(2010)
J Virol
, vol.84
, pp. 3220-3229
-
-
Gack, M.U.1
Nistal-Villan, E.2
Inn, K.S.3
Garcia-Sastre, A.4
Jung, J.U.5
-
70
-
-
84958663116
-
Native human papillomavirus production, quantification, and infectivity analysis
-
Biryukov J, Cruz L, Ryndock EJ, Meyers C. 2015. Native human papillomavirus production, quantification, and infectivity analysis. Methods Mol Biol 1249:317-331. https://doi.org/10.1007/978-1-4939-2013-6_24
-
(2015)
Methods Mol Biol
, vol.1249
, pp. 317-331
-
-
Biryukov, J.1
Cruz, L.2
Ryndock, E.J.3
Meyers, C.4
-
71
-
-
70349750271
-
Tissue-spanning redox gradient-dependent assembly of native human papillomavirus type 16 virions
-
Conway MJ, Alam S, Ryndock EJ, Cruz L, Christensen ND, Roden RB, Meyers C. 2009. Tissue-spanning redox gradient-dependent assembly of native human papillomavirus type 16 virions. J Virol 83:10515-10526. https://doi.org/10.1128/JVI.00731-09
-
(2009)
J Virol
, vol.83
, pp. 10515-10526
-
-
Conway, M.J.1
Alam, S.2
Ryndock, E.J.3
Cruz, L.4
Christensen, N.D.5
Roden, R.B.6
Meyers, C.7
-
72
-
-
79960449881
-
Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16
-
Conway MJ, Cruz L, Alam S, Christensen ND, Meyers C. 2011. Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. PLoS One 6:e22427. https://doi .org/10.1371/journal.pone.0022427
-
(2011)
PLoS One
, vol.6
-
-
Conway, M.J.1
Cruz, L.2
Alam, S.3
Christensen, N.D.4
Meyers, C.5
-
73
-
-
79951560833
-
Crossneutralization potential of native human papillomavirus N-terminal L2 epitopes
-
Conway MJ, Cruz L, Alam S, Christensen ND, Meyers C. 2011. Crossneutralization potential of native human papillomavirus N-terminal L2 epitopes. PLoS One 6:e16405. https://doi.org/10.1371/journal .pone.0016405
-
(2011)
PLoS One
, vol.6
-
-
Conway, M.J.1
Cruz, L.2
Alam, S.3
Christensen, N.D.4
Meyers, C.5
|