-
1
-
-
84930183507
-
PRRs are watching you: localization of innate sensing and signaling regulators
-
1 Chow, J., et al. PRRs are watching you: localization of innate sensing and signaling regulators. Virology 479–480 (2015), 104–109.
-
(2015)
Virology
, vol.479-480
, pp. 104-109
-
-
Chow, J.1
-
2
-
-
84918564833
-
Toll-like receptor signaling pathways
-
2 Kawasaki, T., Kawai, T., Toll-like receptor signaling pathways. Front. Immunol., 5, 2014, 461.
-
(2014)
Front. Immunol.
, vol.5
, pp. 461
-
-
Kawasaki, T.1
Kawai, T.2
-
3
-
-
84878232476
-
The history of Toll-like receptors – redefining innate immunity
-
3 O'Neill, L.A., et al. The history of Toll-like receptors – redefining innate immunity. Nat. Rev. Immunol. 13 (2013), 453–460.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 453-460
-
-
O'Neill, L.A.1
-
4
-
-
84892485947
-
Signalling C-type lectin receptors, microbial recognition and immunity
-
4 Hoving, J.C., et al. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 16 (2014), 185–194.
-
(2014)
Cell Microbiol.
, vol.16
, pp. 185-194
-
-
Hoving, J.C.1
-
5
-
-
84980385738
-
Discriminating self from non-self in nucleic acid sensing
-
5 Schlee, M., Hartmann, G., Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16 (2016), 566–580.
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 566-580
-
-
Schlee, M.1
Hartmann, G.2
-
6
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
6 Yoneyama, M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5 (2004), 730–737.
-
(2004)
Nat. Immunol.
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
-
7
-
-
80053590435
-
Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter
-
7 Belgnaoui, S.M., et al. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr. Opin. Immunol. 23 (2011), 564–572.
-
(2011)
Curr. Opin. Immunol.
, vol.23
, pp. 564-572
-
-
Belgnaoui, S.M.1
-
8
-
-
84921047960
-
Viral RNA detection by RIG-I-like receptors
-
8 Yoneyama, M., Viral RNA detection by RIG-I-like receptors. Curr. Opin. Immunol. 32 (2015), 48–53.
-
(2015)
Curr. Opin. Immunol.
, vol.32
, pp. 48-53
-
-
Yoneyama, M.1
-
9
-
-
84899125345
-
Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens
-
9 Gack, M.U., Mechanisms of RIG-I-like receptor activation and manipulation by viral pathogens. J. Virol. 88 (2014), 5213–5216.
-
(2014)
J. Virol.
, vol.88
, pp. 5213-5216
-
-
Gack, M.U.1
-
10
-
-
84899957213
-
Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
-
10 Peisley, A., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509 (2014), 110–114.
-
(2014)
Nature
, vol.509
, pp. 110-114
-
-
Peisley, A.1
-
11
-
-
79961133270
-
MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
-
11 Hou, F., MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146 (2011), 448–461.
-
(2011)
Cell
, vol.146
, pp. 448-461
-
-
Hou, F.1
-
12
-
-
84887990870
-
Mechanisms of MAVS regulation at the mitochondrial membrane
-
12 Jacobs, J.L., Coyne, C.B., Mechanisms of MAVS regulation at the mitochondrial membrane. J. Mol. Biol. 425 (2013), 5009–5019.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 5009-5019
-
-
Jacobs, J.L.1
Coyne, C.B.2
-
13
-
-
84961144521
-
Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway
-
13 Pattabhi, S., Targeting innate immunity for antiviral therapy through small molecule agonists of the RLR pathway. J. Virol. 90 (2016), 2372–2387.
-
(2016)
J. Virol.
, vol.90
, pp. 2372-2387
-
-
Pattabhi, S.1
-
14
-
-
84942133125
-
Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant
-
14 Beljanski, V., Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant. J. Virol. 89 (2015), 10612–10624.
-
(2015)
J. Virol.
, vol.89
, pp. 10612-10624
-
-
Beljanski, V.1
-
15
-
-
84937715615
-
Sequence-specific modifications enhance the broad-spectrum antiviral response activated by RIG-I agonists
-
15 Chiang, C., Sequence-specific modifications enhance the broad-spectrum antiviral response activated by RIG-I agonists. J. Virol. 89 (2015), 8011–8025.
-
(2015)
J. Virol.
, vol.89
, pp. 8011-8025
-
-
Chiang, C.1
-
16
-
-
84878190840
-
Immune sensing of DNA
-
16 Paludan, S.R., Bowie, A.G., Immune sensing of DNA. Immunity 38 (2013), 870–880.
-
(2013)
Immunity
, vol.38
, pp. 870-880
-
-
Paludan, S.R.1
Bowie, A.G.2
-
17
-
-
84884138508
-
The interferon response to intracellular DNA: why so many receptors?
-
17 Unterholzner, L., The interferon response to intracellular DNA: why so many receptors?. Immunobiology 218 (2013), 1312–1321.
-
(2013)
Immunobiology
, vol.218
, pp. 1312-1321
-
-
Unterholzner, L.1
-
18
-
-
84873711885
-
Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
-
18 Sun, L., et al. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339 (2013), 786–791.
-
(2013)
Science
, vol.339
, pp. 786-791
-
-
Sun, L.1
-
19
-
-
79955542915
-
A diverse range of gene products are effectors of the type I interferon antiviral response
-
19 Schoggins, J.W., A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472 (2011), 481–485.
-
(2011)
Nature
, vol.472
, pp. 481-485
-
-
Schoggins, J.W.1
-
20
-
-
84893863593
-
The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop
-
20 Zhang, X., The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 6 (2014), 421–443.
-
(2014)
Cell Rep.
, vol.6
, pp. 421-443
-
-
Zhang, X.1
-
21
-
-
84880508067
-
Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
-
21 Zhang, X., Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 2013 (2013), 226–235.
-
(2013)
Mol. Cell
, vol.2013
, pp. 226-235
-
-
Zhang, X.1
-
22
-
-
84879385334
-
cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
-
22 Ablasser, A., et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498 (2013), 380–384.
-
(2013)
Nature
, vol.498
, pp. 380-384
-
-
Ablasser, A.1
-
23
-
-
84878309796
-
Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP–AMP synthase
-
23 Gao, P., et al. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP–AMP synthase. Cell 153 (2013), 1094–1107.
-
(2013)
Cell
, vol.153
, pp. 1094-1107
-
-
Gao, P.1
-
24
-
-
84879408976
-
Structural mechanism of cytosolic DNA sensing by cGAS
-
24 Civril, F., Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498 (2013), 332–337.
-
(2013)
Nature
, vol.498
, pp. 332-337
-
-
Civril, F.1
-
25
-
-
66649109939
-
ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
-
25 Sun, W., ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 8653–8658.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 8653-8658
-
-
Sun, W.1
-
26
-
-
53349168904
-
The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
-
26 Zhong, B., The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29 (2008), 538–550.
-
(2008)
Immunity
, vol.29
, pp. 538-550
-
-
Zhong, B.1
-
27
-
-
53349178089
-
STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
-
27 Ishikawa, H., Barber, G.N., STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455 (2008), 674–678.
-
(2008)
Nature
, vol.455
, pp. 674-678
-
-
Ishikawa, H.1
Barber, G.N.2
-
28
-
-
49449115516
-
MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals
-
28 Jin, L., MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell Biol. 28 (2008), 5014–5026.
-
(2008)
Mol. Cell Biol.
, vol.28
, pp. 5014-5026
-
-
Jin, L.1
-
29
-
-
84896732956
-
The endoplasmic reticulum-mitochondria connection: one touch, multiple functions
-
29 Marchi, S., et al. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim. Biophys. Acta 1837 (2014), 461–469.
-
(2014)
Biochim. Biophys. Acta
, vol.1837
, pp. 461-469
-
-
Marchi, S.1
-
30
-
-
84862996389
-
Cyclic di-GMP sensing via the innate immune signaling protein STING
-
30 Yin, Q., Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46 (2012), 735–774.
-
(2012)
Mol. Cell
, vol.46
, pp. 735-774
-
-
Yin, Q.1
-
31
-
-
84918565372
-
The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING
-
31 Wang, Q., et al. The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41 (2014), 919–933.
-
(2014)
Immunity
, vol.41
, pp. 919-933
-
-
Wang, Q.1
-
32
-
-
84975849555
-
Activation of STING requires palmitoylation at the Golgi
-
32 Mukai, K., et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun., 7, 2016, 11932.
-
(2016)
Nat. Commun.
, vol.7
, pp. 11932
-
-
Mukai, K.1
-
33
-
-
84899077215
-
Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1
-
33 Abe, T., Barber, G.N., Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J. Virol. 88 (2014), 5328–5341.
-
(2014)
J. Virol.
, vol.88
, pp. 5328-5341
-
-
Abe, T.1
Barber, G.N.2
-
34
-
-
62049084519
-
The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA
-
34 Zhong, B., et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30 (2009), 397–407.
-
(2009)
Immunity
, vol.30
, pp. 397-407
-
-
Zhong, B.1
-
35
-
-
84936757319
-
TRIM30alpha is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING
-
35 Wang, Y., et al. TRIM30alpha is a negative-feedback regulator of the intracellular DNA and DNA virus-triggered response by targeting STING. PLoS Pathog., 11, 2015, e1005012.
-
(2015)
PLoS Pathog.
, vol.11
, pp. e1005012
-
-
Wang, Y.1
-
36
-
-
84941767986
-
Viruses transfer the antiviral second messenger cGAMP between cells
-
36 Bridgeman, A., Viruses transfer the antiviral second messenger cGAMP between cells. Science 349 (2015), 1228–1232.
-
(2015)
Science
, vol.349
, pp. 1228-1232
-
-
Bridgeman, A.1
-
37
-
-
84941785319
-
Transmission of innate immune signaling by packaging of cGAMP in viral particles
-
37 Gentili, M., Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349 (2015), 1232–1236.
-
(2015)
Science
, vol.349
, pp. 1232-1236
-
-
Gentili, M.1
-
38
-
-
84888637695
-
Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP
-
38 Ablasser, A., Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503 (2013), 530–534.
-
(2013)
Nature
, vol.503
, pp. 530-534
-
-
Ablasser, A.1
-
39
-
-
84988566040
-
Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing
-
39 Chen, Q., et al. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17 (2016), 1142–1149.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 1142-1149
-
-
Chen, Q.1
-
40
-
-
84870275730
-
Extensive evolutionary and functional diversity among mammalian AIM2-like receptors
-
40 Brunette, R.L., et al. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J. Exp. Med. 209 (2012), 1969–1983.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1969-1983
-
-
Brunette, R.L.1
-
41
-
-
68049092912
-
RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
-
41 Chiu, Y.H., et al. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138 (2009), 576–591.
-
(2009)
Cell
, vol.138
, pp. 576-591
-
-
Chiu, Y.H.1
-
42
-
-
84918539112
-
Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors
-
42 van Montfoort, N., Unmasking immune sensing of retroviruses: interplay between innate sensors and host effectors. Cytokine Growth Factor Rev. 25 (2014), 657–668.
-
(2014)
Cytokine Growth Factor Rev.
, vol.25
, pp. 657-668
-
-
van Montfoort, N.1
-
43
-
-
84961783318
-
Dissecting how CD4 T cells are lost during HIV infection
-
43 Doitsh, G., Greene, W.C., Dissecting how CD4 T cells are lost during HIV infection. Cell Host Microbe. 19 (2016), 280–291.
-
(2016)
Cell Host Microbe.
, vol.19
, pp. 280-291
-
-
Doitsh, G.1
Greene, W.C.2
-
44
-
-
84925872845
-
Innate immune sensing of HIV-1 infection
-
44 Jakobsen, M.R., et al. Innate immune sensing of HIV-1 infection. Curr. Opin. HIV. AIDS 10 (2015), 96–102.
-
(2015)
Curr. Opin. HIV. AIDS
, vol.10
, pp. 96-102
-
-
Jakobsen, M.R.1
-
45
-
-
84886027402
-
Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis
-
45 Sze, A., et al. Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 14 (2013), 422–434.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 422-434
-
-
Sze, A.1
-
46
-
-
84882896267
-
Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
-
46 Gao, D., et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341 (2013), 903–906.
-
(2013)
Science
, vol.341
, pp. 903-906
-
-
Gao, D.1
-
47
-
-
84918823623
-
Cytosolic RNA:DNA hybrids activate the cGAS-STING axis
-
47 Mankan, A.K., Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J. 33 (2014), 2937–2946.
-
(2014)
EMBO J.
, vol.33
, pp. 2937-2946
-
-
Mankan, A.K.1
-
48
-
-
84941954118
-
Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA
-
48 Herzner, A.M., et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16 (2015), 1025–1033.
-
(2015)
Nat. Immunol.
, vol.16
, pp. 1025-1033
-
-
Herzner, A.M.1
-
49
-
-
70349943834
-
STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
-
49 Ishikawa, H., et al. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461 (2009), 788–792.
-
(2009)
Nature
, vol.461
, pp. 788-792
-
-
Ishikawa, H.1
-
50
-
-
77956417791
-
Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells
-
50 Chen, L.L., et al. Molecular basis for an attenuated cytoplasmic dsRNA response in human embryonic stem cells. Cell Cycle 9 (2010), 3552–3564.
-
(2010)
Cell Cycle
, vol.9
, pp. 3552-3564
-
-
Chen, L.L.1
-
51
-
-
84859738629
-
STING mediates neuronal innate immune response following Japanese encephalitis virus infection
-
51 Nazmi, A., et al. STING mediates neuronal innate immune response following Japanese encephalitis virus infection. Sci. Rep., 2, 2012, 347.
-
(2012)
Sci. Rep.
, vol.2
, pp. 347
-
-
Nazmi, A.1
-
52
-
-
84872163319
-
Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity
-
52 Nitta, S., et al. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 57 (2013), 46–58.
-
(2013)
Hepatology
, vol.57
, pp. 46-58
-
-
Nitta, S.1
-
53
-
-
84959036465
-
Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses
-
53 Holm, C.K., et al. Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nat. Commun., 7, 2016, 10680.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10680
-
-
Holm, C.K.1
-
54
-
-
84864036246
-
Dengue virus targets the adaptor protein MITA to subvert host innate immunity
-
54 Yu, C.Y., et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog., 8, 2012, e1002780.
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002780
-
-
Yu, C.Y.1
-
55
-
-
84868102239
-
DENV inhibits type I IFN production in infected cells by cleaving human STING
-
55 Aguirre, S., et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog., 8, 2012, e1002934.
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002934
-
-
Aguirre, S.1
-
56
-
-
84891934330
-
Cell type-specific subcellular localization of phospho-TBK1 in response to cytoplasmic viral DNA
-
56 Suzuki, T., et al. Cell type-specific subcellular localization of phospho-TBK1 in response to cytoplasmic viral DNA. PLoS One, 8, 2013, e83639.
-
(2013)
PLoS One
, vol.8
, pp. e83639
-
-
Suzuki, T.1
-
57
-
-
84953205267
-
Characterization of a novel human-specific STING agonist that elicits antiviral activity against emerging alphaviruses
-
57 Sali, T.M., et al. Characterization of a novel human-specific STING agonist that elicits antiviral activity against emerging alphaviruses. PLoS Pathog., 11, 2015, e1005324.
-
(2015)
PLoS Pathog.
, vol.11
, pp. e1005324
-
-
Sali, T.M.1
-
58
-
-
84922986861
-
DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity
-
58 Hartlova, A., et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42 (2015), 332–343.
-
(2015)
Immunity
, vol.42
, pp. 332-343
-
-
Hartlova, A.1
-
59
-
-
84990038856
-
RIG-I-Mediated STING upregulation restricts herpes simplex virus 1 infection
-
59 Liu, Y., et al. RIG-I-Mediated STING upregulation restricts herpes simplex virus 1 infection. J. Virol. 90 (2016), 9406–9419.
-
(2016)
J. Virol.
, vol.90
, pp. 9406-9419
-
-
Liu, Y.1
-
60
-
-
84862138718
-
Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24
-
60 Huang, Z., et al. Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24. Dev. Comp. Immunol. 37 (2012), 414–420.
-
(2012)
Dev. Comp. Immunol.
, vol.37
, pp. 414-420
-
-
Huang, Z.1
-
61
-
-
84891784472
-
siRNA enhances DNA-mediated interferon lambda-1 response through crosstalk between RIG-I and IFI16 signalling pathway
-
61 Sui, H., et al. siRNA enhances DNA-mediated interferon lambda-1 response through crosstalk between RIG-I and IFI16 signalling pathway. Nucleic Acids Res. 42 (2014), 583–598.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 583-598
-
-
Sui, H.1
-
62
-
-
84895904323
-
Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity
-
62 Schoggins, J.W., et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505 (2014), 691–695.
-
(2014)
Nature
, vol.505
, pp. 691-695
-
-
Schoggins, J.W.1
-
63
-
-
84906544279
-
Interferon gamma-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses
-
63 Thompson, M.R., et al. Interferon gamma-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J. Biol. Chem. 289 (2014), 23568–23581.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 23568-23581
-
-
Thompson, M.R.1
-
64
-
-
84910040154
-
Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease
-
64 Ahn, J., Barber, G.N., Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr. Opin. Immunol. 31 (2014), 121–126.
-
(2014)
Curr. Opin. Immunol.
, vol.31
, pp. 121-126
-
-
Ahn, J.1
Barber, G.N.2
-
65
-
-
84916894965
-
STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells
-
65 Klarquist, J., et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193 (2014), 6124–6134.
-
(2014)
J. Immunol.
, vol.193
, pp. 6124-6134
-
-
Klarquist, J.1
-
66
-
-
84912120595
-
STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors
-
66 Woo, S.R., et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41 (2014), 830–842.
-
(2014)
Immunity
, vol.41
, pp. 830-842
-
-
Woo, S.R.1
-
67
-
-
84912128872
-
STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors
-
67 Deng, L., et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41 (2014), 843–852.
-
(2014)
Immunity
, vol.41
, pp. 843-852
-
-
Deng, L.1
-
68
-
-
84991594418
-
STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation
-
68 Takashima, K., et al. STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation. Biochem. Biophys. Res. Commun. 478 (2016), 1764–1771.
-
(2016)
Biochem. Biophys. Res. Commun.
, vol.478
, pp. 1764-1771
-
-
Takashima, K.1
-
69
-
-
84992497238
-
Triggering intracellular receptors for vaccine adjuvantation
-
69 Gutjahr, A., et al. Triggering intracellular receptors for vaccine adjuvantation. Trends Immunol., 37, 2016, 716.
-
(2016)
Trends Immunol.
, vol.37
, pp. 716
-
-
Gutjahr, A.1
-
70
-
-
84964313767
-
STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer
-
70 Chandra, D., et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol. Res. 2 (2014), 901–910.
-
(2014)
Cancer Immunol. Res.
, vol.2
, pp. 901-910
-
-
Chandra, D.1
-
71
-
-
84937978529
-
STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice
-
71 Wang, Z., Celis, E., STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol. Immunother. 64 (2015), 1057–1066.
-
(2015)
Cancer Immunol. Immunother.
, vol.64
, pp. 1057-1066
-
-
Wang, Z.1
Celis, E.2
-
72
-
-
84940172128
-
Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma
-
72 Nakamura, T., et al. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J. Control Release 216 (2015), 149–157.
-
(2015)
J. Control Release
, vol.216
, pp. 149-157
-
-
Nakamura, T.1
-
73
-
-
84877795529
-
Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid
-
73 Conlon, J., et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190 (2013), 5216–5225.
-
(2013)
J. Immunol.
, vol.190
, pp. 5216-5225
-
-
Conlon, J.1
-
74
-
-
84929705879
-
Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity
-
74 Corrales, L., et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11 (2015), 1018–1030.
-
(2015)
Cell Rep.
, vol.11
, pp. 1018-1030
-
-
Corrales, L.1
-
75
-
-
84928199174
-
STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade
-
75 Fu, J., et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med., 7, 2015, 283ra52.
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 283ra52
-
-
Fu, J.1
-
76
-
-
84971237993
-
Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer
-
76 Chen, Q., et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533 (2016), 493–498.
-
(2016)
Nature
, vol.533
, pp. 493-498
-
-
Chen, Q.1
-
77
-
-
84875311005
-
The chemotherapeutic agent DMXAA as a unique IRF3-dependent type-2 vaccine adjuvant
-
77 Tang, C.K., et al. The chemotherapeutic agent DMXAA as a unique IRF3-dependent type-2 vaccine adjuvant. PLoS One, 8, 2013, e60038.
-
(2013)
PLoS One
, vol.8
, pp. e60038
-
-
Tang, C.K.1
-
78
-
-
84910031744
-
Inflammation-driven carcinogenesis is mediated through STING
-
78 Ahn, J., et al. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun., 5, 2014, 5166.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5166
-
-
Ahn, J.1
-
79
-
-
84885169498
-
Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses
-
79 Huang, L., et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J. Immunol. 191 (2013), 3509–3513.
-
(2013)
J. Immunol.
, vol.191
, pp. 3509-3513
-
-
Huang, L.1
-
80
-
-
84965032473
-
STING promotes the growth of tumors characterized by low antigenicity via IDO activation
-
80 Lemos, H., et al. STING promotes the growth of tumors characterized by low antigenicity via IDO activation. Cancer Res. 76 (2016), 2076–2081.
-
(2016)
Cancer Res.
, vol.76
, pp. 2076-2081
-
-
Lemos, H.1
-
81
-
-
55549114663
-
5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma
-
81 Poeck, H., et al. 5′-Triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nat. Med. 14 (2008), 1256–1263.
-
(2008)
Nat. Med.
, vol.14
, pp. 1256-1263
-
-
Poeck, H.1
-
82
-
-
84864771282
-
Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics
-
82 Van, D.N., et al. Innate immune agonist, dsRNA, induces apoptosis in ovarian cancer cells and enhances the potency of cytotoxic chemotherapeutics. FASEB J. 26 (2012), 3188–3198.
-
(2012)
FASEB J.
, vol.26
, pp. 3188-3198
-
-
Van, D.N.1
-
83
-
-
68849096790
-
Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells
-
83 Besch, R., et al. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J. Clin. Invest. 119 (2009), 2399–2411.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2399-2411
-
-
Besch, R.1
-
84
-
-
84875464528
-
Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer
-
84 Ellermeier, J., et al. Therapeutic efficacy of bifunctional siRNA combining TGF-beta1 silencing with RIG-I activation in pancreatic cancer. Cancer Res. 73 (2013), 1709–1720.
-
(2013)
Cancer Res.
, vol.73
, pp. 1709-1720
-
-
Ellermeier, J.1
-
85
-
-
34848837959
-
Central role of interferon regulatory factor-1 (IRF-1) in controlling retinoic acid inducible gene-I (RIG-I) expression
-
85 Su, Z.Z., et al. Central role of interferon regulatory factor-1 (IRF-1) in controlling retinoic acid inducible gene-I (RIG-I) expression. J. Cell Physiol. 213 (2007), 502–510.
-
(2007)
J. Cell Physiol.
, vol.213
, pp. 502-510
-
-
Su, Z.Z.1
-
86
-
-
84967157564
-
Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma
-
86 Liu, Z., et al. Ftx non coding RNA-derived miR-545 promotes cell proliferation by targeting RIG-I in hepatocellular carcinoma. Oncotarget 7 (2016), 25350–25365.
-
(2016)
Oncotarget
, vol.7
, pp. 25350-25365
-
-
Liu, Z.1
-
87
-
-
84973461693
-
microRNA-34a-upregulated retinoic acid-inducible gene-I promotes apoptosis and delays cell cycle transition in cervical cancer cells
-
87 Wang, J.H., et al. microRNA-34a-upregulated retinoic acid-inducible gene-I promotes apoptosis and delays cell cycle transition in cervical cancer cells. DNA Cell Biol. 35 (2016), 267–279.
-
(2016)
DNA Cell Biol.
, vol.35
, pp. 267-279
-
-
Wang, J.H.1
-
88
-
-
84892434546
-
Hepatic RIG-I predicts survival and interferon-alpha therapeutic response in hepatocellular carcinoma
-
88 Hou, J., et al. Hepatic RIG-I predicts survival and interferon-alpha therapeutic response in hepatocellular carcinoma. Cancer Cell 25 (2014), 49–63.
-
(2014)
Cancer Cell
, vol.25
, pp. 49-63
-
-
Hou, J.1
-
89
-
-
84957949117
-
RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1
-
89 Szabo, A., et al. RIG-I inhibits the MAPK-dependent proliferation of BRAF mutant melanoma cells via MKP-1. Cell Signal. 28 (2016), 335–347.
-
(2016)
Cell Signal.
, vol.28
, pp. 335-347
-
-
Szabo, A.1
-
90
-
-
84966891722
-
Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs
-
90 Ranoa, D.R., et al. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget 7 (2016), 26496–26515.
-
(2016)
Oncotarget
, vol.7
, pp. 26496-26515
-
-
Ranoa, D.R.1
-
91
-
-
84962585468
-
Cutting edge: the RIG-I ligand 3pRNA potently improves CTL cross-priming and facilitates antiviral vaccination
-
91 Hochheiser, K., et al. Cutting edge: the RIG-I ligand 3pRNA potently improves CTL cross-priming and facilitates antiviral vaccination. J. Immunol. 196 (2016), 2439–2443.
-
(2016)
J. Immunol.
, vol.196
, pp. 2439-2443
-
-
Hochheiser, K.1
|