메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages

Correcting the impact of docking pose generation error on binding affinity prediction

Author keywords

Binding affinity; Drug discovery; Machine learning; Molecular docking

Indexed keywords

ARTIFICIAL INTELLIGENCE; BINDING ENERGY; COMPLEXATION; FORECASTING; LEARNING SYSTEMS; LIGANDS; PROTEINS;

EID: 84995688316     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1169-4     Document Type: Conference Paper
Times cited : (46)

References (17)
  • 1
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455-61.
    • (2010) J Comput Chem , vol.31 , Issue.2 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 2
    • 84894639153 scopus 로고    scopus 로고
    • istar: A Web Platform for Large-Scale Protein-Ligand Docking
    • Li H, Leung KS, Ballester PJ, Wong MH. istar: A Web Platform for Large-Scale Protein-Ligand Docking. PLoS ONE. 2014; 9(1):85678.
    • (2014) PLoS ONE , vol.9 , Issue.1 , pp. 85678
    • Li, H.1    Leung, K.S.2    Ballester, P.J.3    Wong, M.H.4
  • 3
    • 84945475267 scopus 로고    scopus 로고
    • Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
    • Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput Mol Sci. 2015; 5(6):405-24.
    • (2015) WIREs Comput Mol Sci , vol.5 , Issue.6 , pp. 405-424
    • Ain, Q.U.1    Aleksandrova, A.2    Roessler, F.D.3    Ballester, P.J.4
  • 4
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010; 26(9):1169-75.
    • (2010) Bioinformatics , vol.26 , Issue.9 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 5
    • 84897010735 scopus 로고    scopus 로고
    • Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?
    • Ballester PJ, Schreyer A, Blundell TL. Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?J Chem Inf Model. 2014; 54(3):944-55.
    • (2014) J Chem Inf Model , vol.54 , Issue.3 , pp. 944-955
    • Ballester, P.J.1    Schreyer, A.2    Blundell, T.L.3
  • 6
    • 84923588607 scopus 로고    scopus 로고
    • Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets
    • Li H, Leung KS, Wong MH, Ballester PJ. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol Inf. 2015; 34(2-3):115-26.
    • (2015) Mol Inf , vol.34 , Issue.2-3 , pp. 115-126
    • Li, H.1    Leung, K.S.2    Wong, M.H.3    Ballester, P.J.4
  • 7
    • 84906829436 scopus 로고    scopus 로고
    • Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
    • Li H, Leung KS, Wong MH, Ballester P. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinforma. 2014; 15(1):291.
    • (2014) BMC Bioinforma , vol.15 , Issue.1 , pp. 291
    • Li, H.1    Leung, K.S.2    Wong, M.H.3    Ballester, P.4
  • 9
    • 84938280812 scopus 로고    scopus 로고
    • Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
    • Li H, Leung KS, Wong MH, Ballester PJ. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest. Molecules. 2015; 20(6):10947-62.
    • (2015) Molecules , vol.20 , Issue.6 , pp. 10947-10962
    • Li, H.1    Leung, K.S.2    Wong, M.H.3    Ballester, P.J.4
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach Learn. 2001; 45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 84868679998 scopus 로고    scopus 로고
    • Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression. In: Pattern Recognition in Bioinformatics
    • Berlin: Springer
    • Ballester PJ. Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression. In: Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, vol. 7632. Berlin: Springer: 2012. p. 14-25.
    • (2012) Lecture Notes in Computer Science , vol.7632 , pp. 14-25
    • Ballester, P.J.1
  • 13
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • London: Chapman & Hall
    • Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees. London: Chapman & Hall; 1984.
    • (1984)
    • Breiman, L.1    Friedman, J.2    Stone, C.J.3    Olshen, R.A.4
  • 14
    • 0345548657 scopus 로고    scopus 로고
    • Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
    • Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J Chem Inf Comput Sci. 2003; 43(6):1947-58.
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.6 , pp. 1947-1958
    • Svetnik, V.1    Liaw, A.2    Tong, C.3    Culberson, J.C.4    Sheridan, R.P.5    Feuston, B.P.6
  • 15
    • 66149103553 scopus 로고    scopus 로고
    • Comparative Assessment of Scoring Functions on a Diverse Test Set
    • Cheng T, Li X, Li Y, Liu Z, Wang R. Comparative Assessment of Scoring Functions on a Diverse Test Set. J Chem Inf Model. 2009; 49(4):1079-93.
    • (2009) J Chem Inf Model , vol.49 , Issue.4 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 16
    • 84883250593 scopus 로고    scopus 로고
    • SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
    • Zilian D, Sotriffer CA. SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes. J Chem Inf Model. 2013; 53(8):1923-33.
    • (2013) J Chem Inf Model , vol.53 , Issue.8 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 17
    • 84894632844 scopus 로고    scopus 로고
    • iview: an interactive WebGL visualizer for protein-ligand complex
    • Li H, Leung KS, Nakane T, Wong MH. iview: an interactive WebGL visualizer for protein-ligand complex. BMC Bioinformatics. 2014; 15(1):56.
    • (2014) BMC Bioinformatics , vol.15 , Issue.1 , pp. 56
    • Li, H.1    Leung, K.S.2    Nakane, T.3    Wong, M.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.