-
1
-
-
76149120388
-
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
-
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455-61.
-
(2010)
J Comput Chem
, vol.31
, Issue.2
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
2
-
-
84894639153
-
istar: A Web Platform for Large-Scale Protein-Ligand Docking
-
Li H, Leung KS, Ballester PJ, Wong MH. istar: A Web Platform for Large-Scale Protein-Ligand Docking. PLoS ONE. 2014; 9(1):85678.
-
(2014)
PLoS ONE
, vol.9
, Issue.1
, pp. 85678
-
-
Li, H.1
Leung, K.S.2
Ballester, P.J.3
Wong, M.H.4
-
3
-
-
84945475267
-
Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
-
Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. WIREs Comput Mol Sci. 2015; 5(6):405-24.
-
(2015)
WIREs Comput Mol Sci
, vol.5
, Issue.6
, pp. 405-424
-
-
Ain, Q.U.1
Aleksandrova, A.2
Roessler, F.D.3
Ballester, P.J.4
-
4
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics. 2010; 26(9):1169-75.
-
(2010)
Bioinformatics
, vol.26
, Issue.9
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
5
-
-
84897010735
-
Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?
-
Ballester PJ, Schreyer A, Blundell TL. Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?J Chem Inf Model. 2014; 54(3):944-55.
-
(2014)
J Chem Inf Model
, vol.54
, Issue.3
, pp. 944-955
-
-
Ballester, P.J.1
Schreyer, A.2
Blundell, T.L.3
-
6
-
-
84923588607
-
Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets
-
Li H, Leung KS, Wong MH, Ballester PJ. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets. Mol Inf. 2015; 34(2-3):115-26.
-
(2015)
Mol Inf
, vol.34
, Issue.2-3
, pp. 115-126
-
-
Li, H.1
Leung, K.S.2
Wong, M.H.3
Ballester, P.J.4
-
7
-
-
84906829436
-
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
-
Li H, Leung KS, Wong MH, Ballester P. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinforma. 2014; 15(1):291.
-
(2014)
BMC Bioinforma
, vol.15
, Issue.1
, pp. 291
-
-
Li, H.1
Leung, K.S.2
Wong, M.H.3
Ballester, P.4
-
8
-
-
84868556569
-
Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification
-
Ballester PJ, Mangold M, Howard NI, Robinson RLM, Abell C, Blumberger J, Mitchell JBO. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification. J R Soc Interface. 2012; 9(77):3196-207.
-
(2012)
J R Soc Interface
, vol.9
, Issue.77
, pp. 3196-3207
-
-
Ballester, P.J.1
Mangold, M.2
Howard, N.I.3
Robinson, R.L.M.4
Abell, C.5
Blumberger, J.6
Mitchell, J.B.O.7
-
9
-
-
84938280812
-
Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
-
Li H, Leung KS, Wong MH, Ballester PJ. Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest. Molecules. 2015; 20(6):10947-62.
-
(2015)
Molecules
, vol.20
, Issue.6
, pp. 10947-10962
-
-
Li, H.1
Leung, K.S.2
Wong, M.H.3
Ballester, P.J.4
-
10
-
-
80054928964
-
Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models
-
Wang JC, Lin JH, Chen CM, Perryman AL, Olson AJ. Robust Scoring Functions for Protein-Ligand Interactions with Quantum Chemical Charge Models. Journal of Chemical Information and Modeling. 2011; 51(10):2528-37.
-
(2011)
Journal of Chemical Information and Modeling
, vol.51
, Issue.10
, pp. 2528-2537
-
-
Wang, J.C.1
Lin, J.H.2
Chen, C.M.3
Perryman, A.L.4
Olson, A.J.5
-
11
-
-
0035478854
-
Random Forests
-
Breiman L. Random Forests. Mach Learn. 2001; 45(1):5-32.
-
(2001)
Mach Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
12
-
-
84868679998
-
Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression. In: Pattern Recognition in Bioinformatics
-
Berlin: Springer
-
Ballester PJ. Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression. In: Pattern Recognition in Bioinformatics. Lecture Notes in Computer Science, vol. 7632. Berlin: Springer: 2012. p. 14-25.
-
(2012)
Lecture Notes in Computer Science
, vol.7632
, pp. 14-25
-
-
Ballester, P.J.1
-
14
-
-
0345548657
-
Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling
-
Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J Chem Inf Comput Sci. 2003; 43(6):1947-58.
-
(2003)
J Chem Inf Comput Sci
, vol.43
, Issue.6
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
15
-
-
66149103553
-
Comparative Assessment of Scoring Functions on a Diverse Test Set
-
Cheng T, Li X, Li Y, Liu Z, Wang R. Comparative Assessment of Scoring Functions on a Diverse Test Set. J Chem Inf Model. 2009; 49(4):1079-93.
-
(2009)
J Chem Inf Model
, vol.49
, Issue.4
, pp. 1079-1093
-
-
Cheng, T.1
Li, X.2
Li, Y.3
Liu, Z.4
Wang, R.5
-
16
-
-
84883250593
-
SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
-
Zilian D, Sotriffer CA. SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes. J Chem Inf Model. 2013; 53(8):1923-33.
-
(2013)
J Chem Inf Model
, vol.53
, Issue.8
, pp. 1923-1933
-
-
Zilian, D.1
Sotriffer, C.A.2
-
17
-
-
84894632844
-
iview: an interactive WebGL visualizer for protein-ligand complex
-
Li H, Leung KS, Nakane T, Wong MH. iview: an interactive WebGL visualizer for protein-ligand complex. BMC Bioinformatics. 2014; 15(1):56.
-
(2014)
BMC Bioinformatics
, vol.15
, Issue.1
, pp. 56
-
-
Li, H.1
Leung, K.S.2
Nakane, T.3
Wong, M.H.4
|