메뉴 건너뛰기




Volumn 13, Issue 12, 2017, Pages 2028-2040

NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models

Author keywords

Alzheimer's disease; APP; autophagy; A ; class III phosphatidylinositol 3 kinase (PtdIns3K); NRBF2

Indexed keywords

AMYLOID BETA PROTEIN[1-40]; AMYLOID BETA PROTEIN[1-42]; MEMBRANE PROTEIN; NUCLEAR RECEPTOR BINDING FACTOR 2; PHOSPHATIDYLINOSITOL 3 KINASE; TRANSMEMBRANE PROTEIN APP; UNCLASSIFIED DRUG; AMYLOID BETA PROTEIN; NRBF2 PROTEIN, MOUSE; PEPTIDE FRAGMENT; PROTEIN BINDING; TRANSCRIPTION FACTOR;

EID: 85041203283     PISSN: 15548627     EISSN: 15548635     Source Type: Journal    
DOI: 10.1080/15548627.2017.1379633     Document Type: Article
Times cited : (60)

References (57)
  • 1
    • 79959886270 scopus 로고    scopus 로고
    • Amyloid precursor protein processing and Alzheimer's disease
    • O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Ann Rev Neurosci. 2011;34:185. doi:10.1146/annurev-neuro-061010-113613.
    • (2011) Ann Rev Neurosci , vol.34 , pp. 185
    • O'Brien, R.J.1    Wong, P.C.2
  • 2
    • 84871922036 scopus 로고    scopus 로고
    • Deciphering the mechanism underlying late-onset Alzheimer disease
    • Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol. 2013;9:25–34. doi:10.1038/nrneurol.2012.236.
    • (2013) Nat Rev Neurol , vol.9 , pp. 25-34
    • Krstic, D.1    Knuesel, I.2
  • 3
    • 34250819839 scopus 로고    scopus 로고
    • Intracellular amyloid-β in Alzheimer's disease
    • LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer's disease. Nat Rev Neurosci. 2007;8:499–509. doi:10.1038/nrn2168.
    • (2007) Nat Rev Neurosci , vol.8 , pp. 499-509
    • LaFerla, F.M.1    Green, K.N.2    Oddo, S.3
  • 6
    • 0037135111 scopus 로고    scopus 로고
    • The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics
    • Hardy J, DJ S. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 2002;297:353–6. doi:10.1126/science.1072994.
    • (2002) Science , vol.297 , pp. 353-356
    • Hardy, J.1    Dj, S.2
  • 7
    • 84923250107 scopus 로고    scopus 로고
    • Cellular functions of the amyloid precursor protein from development to dementia
    • van der Kant R, Goldstein LS. Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell. 2015;32:502–15. doi:10.1016/j.devcel.2015.01.022.
    • (2015) Dev Cell , vol.32 , pp. 502-515
    • van der Kant, R.1    Goldstein, L.S.2
  • 9
    • 84882254367 scopus 로고    scopus 로고
    • The role of autophagy in neurodegenerative disease
    • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19:983–97. doi:10.1038/nm.3232.
    • (2013) Nat Med , vol.19 , pp. 983-997
    • Nixon, R.A.1
  • 10
    • 84929903016 scopus 로고    scopus 로고
    • Compromised autophagy and neurodegenerative diseases
    • Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci. 2015;16:345–57. doi:10.1038/nrn3961.
    • (2015) Nat Rev Neurosci , vol.16 , pp. 345-357
    • Menzies, F.M.1    Fleming, A.2    Rubinsztein, D.C.3
  • 12
    • 77951227122 scopus 로고    scopus 로고
    • Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau effects on cognitive impairments
    • Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and tau effects on cognitive impairments. J Biol Chem. 2010;285:13107–20. doi:10.1074/jbc.M110.100420.
    • (2010) J Biol Chem , vol.285 , pp. 13107-13120
    • Caccamo, A.1    Majumder, S.2    Richardson, A.3    Strong, R.4    Oddo, S.5
  • 13
    • 79955969705 scopus 로고    scopus 로고
    • Autophagy failure in Alzheimer's disease—locating the primary defect
    • Nixon RA, Yang D-S. Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiol Dis. 2011;43:38–45. doi:10.1016/j.nbd.2011.01.021.
    • (2011) Neurobiol Dis , vol.43 , pp. 38-45
    • Nixon, R.A.1    Yang, D.-S.2
  • 14
    • 49049096562 scopus 로고    scopus 로고
    • Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
    • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008;28:6926–37. doi:10.1523/JNEUROSCI.0800-08.2008.
    • (2008) J Neurosci , vol.28 , pp. 6926-6937
    • Boland, B.1    Kumar, A.2    Lee, S.3    Platt, F.M.4    Wegiel, J.5    Yu, W.H.6    Nixon, R.A.7
  • 16
  • 17
    • 84992489295 scopus 로고    scopus 로고
    • BECN1/Beclin 1 sorts cell-surface APP/amyloid β precursor protein for lysosomal degradation
    • Swaminathan G, Zhu W, Plowey ED. BECN1/Beclin 1 sorts cell-surface APP/amyloid β precursor protein for lysosomal degradation. Autophagy. 2016;12:2404–19. doi:10.1080/15548627.2016.1234561.
    • (2016) Autophagy , vol.12 , pp. 2404-2419
    • Swaminathan, G.1    Zhu, W.2    Plowey, E.D.3
  • 19
    • 84922276427 scopus 로고    scopus 로고
    • Autophagy-related protein 7 deficiency in amyloid β (aβ) precursor protein transgenic mice decreases aβ in the multivesicular bodies and induces aβ accumulation in the golgi
    • et al
    • Nilsson P, Sekiguchi M, Akagi T, Izumi S, Komori T, Hui K, Sörgjerd K, Tanaka M, Saito T, Iwata N, et al. Autophagy-related protein 7 deficiency in amyloid β (aβ) precursor protein transgenic mice decreases aβ in the multivesicular bodies and induces aβ accumulation in the golgi. Am J Pathol. 2015;185:305–13. doi:10.1016/j.ajpath.2014.10.011.
    • (2015) Am J Pathol , vol.185 , pp. 305-313
    • Nilsson, P.1    Sekiguchi, M.2    Akagi, T.3    Izumi, S.4    Komori, T.5    Hui, K.6    Sörgjerd, K.7    Tanaka, M.8    Saito, T.9    Iwata, N.10
  • 20
    • 84940937112 scopus 로고    scopus 로고
    • Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis
    • et al
    • Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Tripoli DL, Czerniewski L, Ballabio A, et al. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. J Neurosci. 2015;35:12137–51. doi:10.1523/JNEUROSCI.0705-15.2015.
    • (2015) J Neurosci , vol.35 , pp. 12137-12151
    • Xiao, Q.1    Yan, P.2    Ma, X.3    Liu, H.4    Perez, R.5    Zhu, A.6    Gonzales, E.7    Tripoli, D.L.8    Czerniewski, L.9    Ballabio, A.10
  • 21
    • 77956305343 scopus 로고    scopus 로고
    • Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease
    • Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer's disease. PloS One. 2010;5:e9979. doi:10.1371/journal.pone.0009979.
    • (2010) PloS One , vol.5
    • Spilman, P.1    Podlutskaya, N.2    Hart, M.J.3    Debnath, J.4    Gorostiza, O.5    Bredesen, D.6    Richardson, A.7    Strong, R.8    Galvan, V.9
  • 22
    • 84862023791 scopus 로고    scopus 로고
    • Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG
    • Li X, He L, Che KH, Funderburk SF, Pan L, Pan N, Zhang M, Yue Z, Zhao Y. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun. 2012;3:662. doi:10.1038/ncomms1648.
    • (2012) Nat Commun , vol.3 , pp. 662
    • Li, X.1    He, L.2    Che, K.H.3    Funderburk, S.F.4    Pan, L.5    Pan, N.6    Zhang, M.7    Yue, Z.8    Zhao, Y.9
  • 24
    • 77953543377 scopus 로고    scopus 로고
    • The Beclin 1–VPS34 complex–at the crossroads of autophagy and beyond
    • Funderburk SF, Wang QJ, Yue Z. The Beclin 1–VPS34 complex–at the crossroads of autophagy and beyond. Trends Cell Biol. 2010;20:355–62. doi:10.1016/j.tcb.2010.03.002.
    • (2010) Trends Cell Biol , vol.20 , pp. 355-362
    • Funderburk, S.F.1    Wang, Q.J.2    Yue, Z.3
  • 25
    • 84903309911 scopus 로고    scopus 로고
    • NRBF2 regulates macroautophagy as a component of Vps34 Complex I
    • Cao Y, Wang Y, Saab WFA, Yang F, Pessin JE, Backer JM. NRBF2 regulates macroautophagy as a component of Vps34 Complex I. Biochem J. 2014;461:315–22. doi:10.1042/BJ20140515.
    • (2014) Biochem J , vol.461 , pp. 315-322
    • Cao, Y.1    Wang, Y.2    Saab, W.F.A.3    Yang, F.4    Pessin, J.E.5    Backer, J.M.6
  • 26
    • 84907215529 scopus 로고    scopus 로고
    • Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels
    • Zhong Y, Morris DH, Jin L, Patel MS, Karunakaran SK, Fu Y-J, Matuszak EA, Weiss HL, Chait BT, Wang QJ. Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem. 2014;289:26021–37. doi:10.1074/jbc.M114.561134.
    • (2014) J Biol Chem , vol.289 , pp. 26021-26037
    • Zhong, Y.1    Morris, D.H.2    Jin, L.3    Patel, M.S.4    Karunakaran, S.K.5    Fu, Y.-J.6    Matuszak, E.A.7    Weiss, H.L.8    Chait, B.T.9    Wang, Q.J.10
  • 27
    • 84978886102 scopus 로고    scopus 로고
    • Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex I of autophagy
    • Young LN, Cho K, Lawrence R, Zoncu R, Hurley JH. Dynamics and architecture of the NRBF2-containing phosphatidylinositol 3-kinase complex I of autophagy. Proc Natl Acad Sci U S A. 2016;113(29):8224–9. doi:10.1073/pnas.1603650113.
    • (2016) Proc Natl Acad Sci U S A , vol.113 , Issue.29 , pp. 8224-8229
    • Young, L.N.1    Cho, K.2    Lawrence, R.3    Zoncu, R.4    Hurley, J.H.5
  • 28
    • 84901304111 scopus 로고    scopus 로고
    • NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity
    • et al
    • Lu J, He L, Behrends C, Araki M, Araki K, Wang QJ, Catanzaro JM, Friedman SL, Zong WX, Fiel MI, et al. NRBF2 regulates autophagy and prevents liver injury by modulating Atg14L-linked phosphatidylinositol-3 kinase III activity. Nat Commun. 2014;5:3920. doi:10.1038/ncomms4920.
    • (2014) Nat Commun , vol.5 , pp. 3920
    • Lu, J.1    He, L.2    Behrends, C.3    Araki, M.4    Araki, K.5    Wang, Q.J.6    Catanzaro, J.M.7    Friedman, S.L.8    Zong, W.X.9    Fiel, M.I.10
  • 29
    • 84887543464 scopus 로고    scopus 로고
    • Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity
    • Araki Y, Ku W-C, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol. 2013;203:299–313. doi:10.1083/jcb.201304123.
    • (2013) J Cell Biol , vol.203 , pp. 299-313
    • Araki, Y.1    Ku, W.-C.2    Akioka, M.3    May, A.I.4    Hayashi, Y.5    Arisaka, F.6    Ishihama, Y.7    Ohsumi, Y.8
  • 30
    • 85011292038 scopus 로고    scopus 로고
    • MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy
    • et al
    • Ma X, Zhang S, He L, Rong Y, Brier LW, Sun Q, Liu R, Fan W, Chen S, Yue Z, et al. MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy. 2017;13:592–607. doi:10.1080/15548627.2016.1269988.
    • (2017) Autophagy , vol.13 , pp. 592-607
    • Ma, X.1    Zhang, S.2    He, L.3    Rong, Y.4    Brier, L.W.5    Sun, Q.6    Liu, R.7    Fan, W.8    Chen, S.9    Yue, Z.10
  • 31
    • 81355124089 scopus 로고    scopus 로고
    • Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer's disease
    • e29-. e40
    • Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging. 2012;33:196. e29-. e40. doi:10.1016/j.neurobiolaging.2010.05.027.
    • (2012) Neurobiol Aging , vol.33 , pp. 196
    • Jawhar, S.1    Trawicka, A.2    Jenneckens, C.3    Bayer, T.A.4    Wirths, O.5
  • 33
    • 49049096562 scopus 로고    scopus 로고
    • Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease
    • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer's disease. J Neurosci. 2008;28:6926–37. doi:10.1523/JNEUROSCI.0800-08.2008.
    • (2008) J Neurosci , vol.28 , pp. 6926-6937
    • Boland, B.1    Kumar, A.2    Lee, S.3    Platt, F.M.4    Wegiel, J.5    Yu, W.H.6    Nixon, R.A.7
  • 34
    • 84908386761 scopus 로고    scopus 로고
    • Targeting autophagy in neurodegenerative diseases
    • Vidal RL, Matus S, Bargsted L, Hetz C. Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci. 2014;35:583–91. doi:10.1016/j.tips.2014.09.002.
    • (2014) Trends Pharmacol Sci , vol.35 , pp. 583-591
    • Vidal, R.L.1    Matus, S.2    Bargsted, L.3    Hetz, C.4
  • 35
    • 0029942495 scopus 로고    scopus 로고
    • Metabolism of the Swedish Amyloid Precursor Protein Variant in Neuro2a (N2a) Cells Evidence That Cleavage at the “β-secretase” site occurs in the golgi apparatus
    • Thinakaran G, Teplow DB, Siman R, Greenberg B, Sisodia SS. Metabolism of the Swedish Amyloid Precursor Protein Variant in Neuro2a (N2a) Cells Evidence That Cleavage at the “β-secretase” site occurs in the golgi apparatus. J Biol Chem. 1996;271:9390–7. doi:10.1074/jbc.271.16.9390.
    • (1996) J Biol Chem , vol.271 , pp. 9390-9397
    • Thinakaran, G.1    Teplow, D.B.2    Siman, R.3    Greenberg, B.4    Sisodia, S.S.5
  • 36
    • 0036548070 scopus 로고    scopus 로고
    • γ-Secretase, Notch, Aβ and Alzheimer's disease: Where do the presenilins fit in?
    • Sisodia SS, St George-Hyslop PH. γ-Secretase, Notch, Aβ and Alzheimer's disease: Where do the presenilins fit in? Nat Rev Neurosci. 2002;3:281–90. doi:10.1038/nrn785.
    • (2002) Nat Rev Neurosci , vol.3 , pp. 281-290
    • Sisodia, S.S.1    St George-Hyslop, P.H.2
  • 37
    • 0036510603 scopus 로고    scopus 로고
    • A sensitive and quantitative assay for measuring cleavage of presenilin substrates
    • Karlström H, Bergman A, Lendahl U, Näslund J, Lundkvist J. A sensitive and quantitative assay for measuring cleavage of presenilin substrates. J Biol Chem. 2002;277:6763–6. doi:10.1074/jbc.C100649200.
    • (2002) J Biol Chem , vol.277 , pp. 6763-6766
    • Karlström, H.1    Bergman, A.2    Lendahl, U.3    Näslund, J.4    Lundkvist, J.5
  • 38
    • 0033972940 scopus 로고    scopus 로고
    • Nuclear receptor binding factor-2 (NRBF-2), a possible gene activator protein interacting with nuclear hormone receptors
    • Yasumo H, Masuda N, Furusawa T, Tsukamoto T, Sadano H, Osumi T. Nuclear receptor binding factor-2 (NRBF-2), a possible gene activator protein interacting with nuclear hormone receptors. Biochim Biophys Acta. 2000;1490:189–97. doi:10.1016/S0167-4781(99)00244-4.
    • (2000) Biochim Biophys Acta , vol.1490 , pp. 189-197
    • Yasumo, H.1    Masuda, N.2    Furusawa, T.3    Tsukamoto, T.4    Sadano, H.5    Osumi, T.6
  • 39
    • 9744273192 scopus 로고    scopus 로고
    • Isolation and functional analysis of a keratinocyte-derived, ligand-regulated nuclear receptor comodulator
    • Flores AM, Li L, Aneskievich BJ. Isolation and functional analysis of a keratinocyte-derived, ligand-regulated nuclear receptor comodulator. J Invest Dermatol. 2004;123:1092–101. doi:10.1111/j.0022-202X.2004.23424.x.
    • (2004) J Invest Dermatol , vol.123 , pp. 1092-1101
    • Flores, A.M.1    Li, L.2    Aneskievich, B.J.3
  • 40
    • 84868687820 scopus 로고    scopus 로고
    • Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein
    • Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol Cell Biol. 2012;32:4410–8. doi:10.1128/MCB.00930-12.
    • (2012) Mol Cell Biol , vol.32 , pp. 4410-4418
    • Parr, C.1    Carzaniga, R.2    Gentleman, S.M.3    Van Leuven, F.4    Walter, J.5    Sastre, M.6
  • 41
    • 0015496390 scopus 로고
    • Lysosomes, pH and the anti-malarial action of chloroquine
    • Homewood C, Warhurst D, Peters W, Baggaley V. Lysosomes, pH and the anti-malarial action of chloroquine. Nature. 1972;23:50–2. doi:10.1038/235050a0.
    • (1972) Nature , vol.23 , pp. 50-52
    • Homewood, C.1    Warhurst, D.2    Peters, W.3    Baggaley, V.4
  • 42
    • 79957917512 scopus 로고    scopus 로고
    • A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTF via Atg5-dependent autophagy pathway
    • Tian Y, Bustos V, Flajolet M, Greengard P. A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 2011;25:1934–42. doi:10.1096/fj.10-175158.
    • (2011) FASEB J , vol.25 , pp. 1934-1942
    • Tian, Y.1    Bustos, V.2    Flajolet, M.3    Greengard, P.4
  • 43
    • 57649221135 scopus 로고    scopus 로고
    • Amyloid precursor protein trafficking, processing, and function
    • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008;283:29615–9. doi:10.1074/jbc.R800019200.
    • (2008) J Biol Chem , vol.283 , pp. 29615-29619
    • Thinakaran, G.1    Koo, E.H.2
  • 45
    • 0037041023 scopus 로고    scopus 로고
    • Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1
    • Lawe DC, Chawla A, Merithew E, Dumas J, Carrington W, Fogarty K, Lifshitz L, Tuft R, Lambright D, Corvera S. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J Biol Chem. 2002;277:8611–7. doi:10.1074/jbc.M109239200.
    • (2002) J Biol Chem , vol.277 , pp. 8611-8617
    • Lawe, D.C.1    Chawla, A.2    Merithew, E.3    Dumas, J.4    Carrington, W.5    Fogarty, K.6    Lifshitz, L.7    Tuft, R.8    Lambright, D.9    Corvera, S.10
  • 47
    • 84920400982 scopus 로고    scopus 로고
    • Autophagy: A druggable process that is deregulated in aging and human disease
    • Kroemer G. Autophagy: A druggable process that is deregulated in aging and human disease. J Clin Invest. 2015;125:1–4. doi:10.1172/JCI78652.
    • (2015) J Clin Invest , vol.125 , pp. 1-4
    • Kroemer, G.1
  • 49
    • 84892875805 scopus 로고    scopus 로고
    • At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy
    • Shen H-M, Mizushima N. At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 2014;39:61–71. doi:10.1016/j.tibs.2013.12.001.
    • (2014) Trends Biochem Sci , vol.39 , pp. 61-71
    • Shen, H.-M.1    Mizushima, N.2
  • 50
    • 84862883617 scopus 로고    scopus 로고
    • A role for presenilins in autophagy revisited: Normal acidification of lysosomes in cells lacking PSEN1 and PSEN2
    • Zhang X, Garbett K, Veeraraghavalu K, Wilburn B, Gilmore R, Mirnics K, Sisodia SS. A role for presenilins in autophagy revisited: Normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012;32:8633–48. doi:10.1523/JNEUROSCI.0556-12.2012.
    • (2012) J Neurosci , vol.32 , pp. 8633-8648
    • Zhang, X.1    Garbett, K.2    Veeraraghavalu, K.3    Wilburn, B.4    Gilmore, R.5    Mirnics, K.6    Sisodia, S.S.7
  • 52
    • 84881025556 scopus 로고    scopus 로고
    • Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome
    • Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome. Prog Neurobiol. 2013;106:33–54. doi:10.1016/j.pneurobio.2013.06.002.
    • (2013) Prog Neurobiol , vol.106 , pp. 33-54
    • Salminen, A.1    Kaarniranta, K.2    Kauppinen, A.3    Ojala, J.4    Haapasalo, A.5    Soininen, H.6    Hiltunen, M.7
  • 53
    • 57649195400 scopus 로고    scopus 로고
    • Autophagy and multivesicular bodies: Two closely related partners
    • Fader C, Colombo M. Autophagy and multivesicular bodies: Two closely related partners. Cell Death Differ. 2009;16:70–8. doi:10.1038/cdd.2008.168.
    • (2009) Cell Death Differ , vol.16 , pp. 70-78
    • Fader, C.1    Colombo, M.2
  • 55
    • 79960706730 scopus 로고    scopus 로고
    • Stimulation of non-amyloidogenic processing of amyloid-β protein precursor by cryptotanshinone involves activation and translocation of ADAM10 and PKC-α
    • Durairajan SSK, Liu L-F, Lu J-H, Koo I, Maruyama K, Chung SK, Huang JD, Li M. Stimulation of non-amyloidogenic processing of amyloid-β protein precursor by cryptotanshinone involves activation and translocation of ADAM10 and PKC-α. J Alzheimer's Dis. 2011;25:245–62.
    • (2011) J Alzheimer's Dis , vol.25 , pp. 245-262
    • Durairajan, S.S.K.1    Liu, L.-F.2    Lu, J.-H.3    Koo, I.4    Maruyama, K.5    Chung, S.K.6    Huang, J.D.7    Li, M.8
  • 56


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.