-
1
-
-
36748999398
-
Introduction: Cell-autonomous immunity
-
Howard JC. 2007. Introduction: cell-autonomous immunity. Microbes Infect 9:1633-1635. https://doi.org/10.1016/j.micinf.2007.09.003.
-
(2007)
Microbes Infect
, vol.9
, pp. 1633-1635
-
-
Howard, J.C.1
-
2
-
-
84860258296
-
Interferon-inducible effector mechanisms in cellautonomous immunity
-
MacMicking JD. 2012. Interferon-inducible effector mechanisms in cellautonomous immunity. Nat Rev Immunol 12:367-382. https://doi.org/10.1038/nri3210.
-
(2012)
Nat Rev Immunol
, vol.12
, pp. 367-382
-
-
Macmicking, J.D.1
-
3
-
-
84973369598
-
Interferon-induced guanylate-binding proteins in inflammasome activation and host defense
-
Kim BH, Chee JD, Bradfield CJ, Park ES, Kumar P, MacMicking JD. 2016. Interferon-induced guanylate-binding proteins in inflammasome activation and host defense. Nat Immunol 17:481-489. https://doi.org/10.1038/ni.3440.
-
(2016)
Nat Immunol
, vol.17
, pp. 481-489
-
-
Kim, B.H.1
Chee, J.D.2
Bradfield, C.J.3
Park, E.S.4
Kumar, P.5
Macmicking, J.D.6
-
4
-
-
85008476077
-
Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation
-
Man SM, Place DE, Kuriakose T, Kanneganti TD. 2017. Interferon-inducible guanylate-binding proteins at the interface of cell-autonomous immunity and inflammasome activation. J Leukoc Biol 101:143-150. https://doi.org/10.1189/jlb.4MR0516-223R.
-
(2017)
J Leukoc Biol
, vol.101
, pp. 143-150
-
-
Man, S.M.1
Place, D.E.2
Kuriakose, T.3
Kanneganti, T.D.4
-
5
-
-
84969579633
-
Interferon-inducible GTPases in host resistance, inflammation and disease
-
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. 2016. Interferon-inducible GTPases in host resistance, inflammation and disease. J Mol Biol 428: 3495-3513. https://doi.org/10.1016/j.jmb.2016.04.032.
-
(2016)
J Mol Biol
, vol.428
, pp. 3495-3513
-
-
Pilla-Moffett, D.1
Barber, M.F.2
Taylor, G.A.3
Coers, J.4
-
6
-
-
85038014553
-
Global mapping of the macrophage-HIV-1 transcriptome reveals that productive infection induces remodeling of host cell DNA and chromatin
-
Deshiere A, Joly-Beauparlant C, Breton Y, Ouellet M, Raymond F, Lodge R, Barat C, Roy MA, Corbeil J, Tremblay MJ. 2017. Global mapping of the macrophage-HIV-1 transcriptome reveals that productive infection induces remodeling of host cell DNA and chromatin. Sci Rep 7:5238. https://doi.org/10.1038/s41598-017-05566-9.
-
(2017)
Sci Rep
, vol.7
, pp. 5238
-
-
Deshiere, A.1
Joly-Beauparlant, C.2
Breton, Y.3
Ouellet, M.4
Raymond, F.5
Lodge, R.6
Barat, C.7
Roy, M.A.8
Corbeil, J.9
Tremblay, M.J.10
-
7
-
-
79955777383
-
A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection
-
Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. 2011. A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science 332:717-721. https://doi.org/10.1126/science.1201711.
-
(2011)
Science
, vol.332
, pp. 717-721
-
-
Kim, B.H.1
Shenoy, A.R.2
Kumar, P.3
Das, R.4
Tiwari, S.5
Macmicking, J.D.6
-
8
-
-
84961221171
-
Guanylate binding protein (GBP) 5 is an interferoninducible inhibitor of HIV-1 infectivity
-
Krapp C, Hotter D, Gawanbacht A, McLaren PJ, Kluge SF, Sturzel CM, Mack K, Reith E, Engelhart S, Ciuffi A, Hornung V, Sauter D, Telenti A, Kirchhoff F. 2016. Guanylate binding protein (GBP) 5 is an interferoninducible inhibitor of HIV-1 infectivity. Cell Host Microbe 19:504-514. https://doi.org/10.1016/j.chom.2016.02.019.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 504-514
-
-
Krapp, C.1
Hotter, D.2
Gawanbacht, A.3
McLaren, P.J.4
Kluge, S.F.5
Sturzel, C.M.6
Mack, K.7
Reith, E.8
Engelhart, S.9
Ciuffi, A.10
Hornung, V.11
Sauter, D.12
Telenti, A.13
Kirchhoff, F.14
-
9
-
-
84975914135
-
A blood RNA signature for tuberculosis disease risk: A prospective cohort study
-
Zak DE, Penn-Nicholson A, Scriba TJ, Thompson E, Suliman S, Amon LM, Mahomed H, Erasmus M, Whatney W, Hussey GD, Abrahams D, Kafaar F, Hawkridge T, Verver S, Hughes EJ, Ota M, Sutherland J, Howe R, Dockrell HM, Boom WH, Thiel B, Ottenhoff THM, Mayanja-Kizza H, Crampin AC, Downing K, Hatherill M, Valvo J, Shankar S, Parida SK, Kaufmann SHE, Walzl G, Aderem A, Hanekom WA, ACS and GC6-74 Cohort Study Groups. 2016. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 387:2312-2322. https://doi.org/10.1016/S0140-6736(15)01316-1.
-
(2016)
Lancet
, vol.387
, pp. 2312-2322
-
-
Zak, D.E.1
Penn-Nicholson, A.2
Scriba, T.J.3
Thompson, E.4
Suliman, S.5
Amon, L.M.6
Mahomed, H.7
Erasmus, M.8
Whatney, W.9
Hussey, G.D.10
Abrahams, D.11
Kafaar, F.12
Hawkridge, T.13
Verver, S.14
Hughes, E.J.15
Ota, M.16
Sutherland, J.17
Howe, R.18
Dockrell, H.M.19
Boom, W.H.20
Thiel, B.21
Ottenhoff, T.22
Mayanja-Kizza, H.23
Crampin, A.C.24
Downing, K.25
Hatherill, M.26
Valvo, J.27
Shankar, S.28
Parida, S.K.29
Kaufmann, S.30
Walzl, G.31
Aderem, A.32
Hanekom, W.A.33
more..
-
10
-
-
85021318986
-
Viral replication complexes are targeted by LC3-guided interferon-inducible GTPases
-
Biering SB, Choi J, Halstrom RA, Brown HM, Beatty WL, Lee S, McCune BT, Dominici E, Williams LE, Orchard RC, Wilen CB, Yamamoto M, Coers J, Taylor GA, Hwang S. 2017. Viral replication complexes are targeted by LC3-guided interferon-inducible GTPases. Cell Host Microbe 22: 74-785.e7. https://doi.org/10.1016/j.chom.2017.06.005.
-
(2017)
Cell Host Microbe
, vol.22
-
-
Biering, S.B.1
Choi, J.2
Halstrom, R.A.3
Brown, H.M.4
Beatty, W.L.5
Lee, S.6
McCune, B.T.7
Dominici, E.8
Williams, L.E.9
Orchard, R.C.10
Wilen, C.B.11
Yamamoto, M.12
Coers, J.13
Taylor, G.A.14
Hwang, S.15
-
11
-
-
33744463639
-
In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters
-
Olszewski MA, Gray J, Vestal DJ. 2006. In silico genomic analysis of the human and murine guanylate-binding protein (GBP) gene clusters. J Interferon Cytokine Res 26:328-352. https://doi.org/10.1089/jir.2006.26.328.
-
(2006)
J Interferon Cytokine Res
, vol.26
, pp. 328-352
-
-
Olszewski, M.A.1
Gray, J.2
Vestal, D.J.3
-
12
-
-
67649376348
-
The evolutionarily dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates
-
Li G, Zhang J, Sun Y, Wang H, Wang Y. 2009. The evolutionarily dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates. Mol Biol Evol 26:1619-1630. https://doi.org/10.1093/molbev/msp074.
-
(2009)
Mol Biol Evol
, vol.26
, pp. 1619-1630
-
-
Li, G.1
Zhang, J.2
Sun, Y.3
Wang, H.4
Wang, Y.5
-
13
-
-
84928545520
-
The transcription factor IRF1 and guanylatebinding proteins target activation of the AIM2 inflammasome by Francisella infection
-
Man SM, Karki R, Malireddi RK, Neale G, Vogel P, Yamamoto M, Lamkanfi M, Kanneganti TD. 2015. The transcription factor IRF1 and guanylatebinding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol 16:467-475. https://doi.org/10.1038/ni.3118.
-
(2015)
Nat Immunol
, vol.16
, pp. 467-475
-
-
Man, S.M.1
Karki, R.2
Malireddi, R.K.3
Neale, G.4
Vogel, P.5
Yamamoto, M.6
Lamkanfi, M.7
Kanneganti, T.D.8
-
14
-
-
84928538482
-
Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida
-
Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L, Ruhl S, Dussurgey S, Dick MS, Kistner A, Rigard M, Degrandi D, Pfeffer K, Yamamoto M, Henry T, Broz P. 2015. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol 16:476-484. https://doi.org/10.1038/ni.3119.
-
(2015)
Nat Immunol
, vol.16
, pp. 476-484
-
-
Meunier, E.1
Wallet, P.2
Dreier, R.F.3
Costanzo, S.4
Anton, L.5
Ruhl, S.6
Dussurgey, S.7
Dick, M.S.8
Kistner, A.9
Rigard, M.10
Degrandi, D.11
Pfeffer, K.12
Yamamoto, M.13
Henry, T.14
Broz, P.15
-
15
-
-
84900564237
-
Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases
-
Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda K, Yamamoto M, Broz P. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509:366-370. https://doi.org/10.1038/nature13157.
-
(2014)
Nature
, vol.509
, pp. 366-370
-
-
Meunier, E.1
Dick, M.S.2
Dreier, R.F.3
Schurmann, N.4
Kenzelmann Broz, D.5
Warming, S.6
Roose-Girma, M.7
Bumann, D.8
Kayagaki, N.9
Takeda, K.10
Yamamoto, M.11
Broz, P.12
-
16
-
-
84860225554
-
GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals
-
Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, Cresswell P, MacMicking JD. 2012. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336:481-485. https://doi.org/10.1126/science.1217141.
-
(2012)
Science
, vol.336
, pp. 481-485
-
-
Shenoy, A.R.1
Wellington, D.A.2
Kumar, P.3
Kassa, H.4
Booth, C.J.5
Cresswell, P.6
Macmicking, J.D.7
-
17
-
-
84949652170
-
Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages
-
Finethy R, Jorgensen I, Haldar AK, de Zoete MR, Strowig T, Flavell RA, Yamamoto M, Nagarajan UM, Miao EA, Coers J. 2015. Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages. Infect Immun 83: 4740-4749. https://doi.org/10.1128/IAI.00856-15.
-
(2015)
Infect Immun
, vol.83
, pp. 4740-4749
-
-
Finethy, R.1
Jorgensen, I.2
Haldar, A.K.3
De Zoete, M.R.4
Strowig, T.5
Flavell, R.A.6
Yamamoto, M.7
Nagarajan, U.M.8
Miao, E.A.9
Coers, J.10
-
18
-
-
84899098318
-
Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS
-
Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, Pfeffer K, Ernst RK, Yamamoto M, Miao EA, Coers J. 2014. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci U S A 111:6046-6051. https://doi.org/10.1073/pnas.1321700111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 6046-6051
-
-
Pilla, D.M.1
Hagar, J.A.2
Haldar, A.K.3
Mason, A.K.4
Degrandi, D.5
Pfeffer, K.6
Ernst, R.K.7
Yamamoto, M.8
Miao, E.A.9
Coers, J.10
-
19
-
-
85033730214
-
Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins
-
Finethy R, Luoma S, Orench-Rivera N, Feeley EM, Haldar AK, Yamamoto M, Kanneganti TD, Kuehn MJ, Coers J. 2017. Inflammasome activation by bacterial outer membrane vesicles requires guanylate binding proteins. mBio 8:e01188-17. https://doi.org/10.1128/mBio.01188-17.
-
(2017)
Mbio
, vol.8
, pp. e01188-e01217
-
-
Finethy, R.1
Luoma, S.2
Orench-Rivera, N.3
Feeley, E.M.4
Haldar, A.K.5
Yamamoto, M.6
Kanneganti, T.D.7
Kuehn, M.J.8
Coers, J.9
-
20
-
-
85006511925
-
Actin-based motility and cell-to-cell spread of bacterial pathogens
-
Lamason RL, Welch MD. 2017. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 35:48-57. https://doi.org/10.1016/j.mib.2016.11.007.
-
(2017)
Curr Opin Microbiol
, vol.35
, pp. 48-57
-
-
Lamason, R.L.1
Welch, M.D.2
-
21
-
-
85034419593
-
Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence
-
Li P, Jiang W, Yu Q, Liu W, Zhou P, Li J, Xu J, Xu B, Wang F, Shao F. 2017. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 551:378-383. https://doi.org/10.1038/nature24467.
-
(2017)
Nature
, vol.551
, pp. 378-383
-
-
Li, P.1
Jiang, W.2
Yu, Q.3
Liu, W.4
Zhou, P.5
Li, J.6
Xu, J.7
Xu, B.8
Wang, F.9
Shao, F.10
-
22
-
-
85032483951
-
GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8
-
Wandel MP, Pathe C, Werner EI, Ellison CJ, Boyle KB, von der Malsburg A, Rohde J, Randow F. 2017. GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8. Cell Host Microbe 22:507-518.e5. https://doi.org/10.1016/j.chom.2017.09.007.
-
(2017)
Cell Host Microbe
, vol.22
, pp. 507-518
-
-
Wandel, M.P.1
Pathe, C.2
Werner, E.I.3
Ellison, C.J.4
Boyle, K.B.5
Von Der Malsburg, A.6
Rohde, J.7
Randow, F.8
-
23
-
-
0033578805
-
Nucleotide-binding characteristics of human guanylate-binding protein 1 (HGBP1) and identification of the third GTP-binding motif
-
Praefcke GJ, Geyer M, Schwemmle M, Robert Kalbitzer H, Herrmann C. 1999. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. J Mol Biol 292:321-332. https://doi.org/10.1006/jmbi.1999.3062.
-
(1999)
J Mol Biol
, vol.292
, pp. 321-332
-
-
Praefcke, G.J.1
Geyer, M.2
Schwemmle, M.3
Robert Kalbitzer, H.4
Herrmann, C.5
-
24
-
-
7044239234
-
Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis
-
Praefcke GJ, Kloep S, Benscheid U, Lilie H, Prakash B, Herrmann C. 2004. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. J Mol Biol 344:257-269. https://doi.org/10.1016/j.jmb.2004.09.026.
-
(2004)
J Mol Biol
, vol.344
, pp. 257-269
-
-
Praefcke, G.J.1
Kloep, S.2
Benscheid, U.3
Lilie, H.4
Prakash, B.5
Herrmann, C.6
-
25
-
-
0034598734
-
Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins
-
Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C. 2000. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403:567-571. https://doi.org/10.1038/35000617.
-
(2000)
Nature
, vol.403
, pp. 567-571
-
-
Prakash, B.1
Praefcke, G.J.2
Renault, L.3
Wittinghofer, A.4
Herrmann, C.5
-
26
-
-
0034282494
-
Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism
-
Prakash B, Renault L, Praefcke GJ, Herrmann C, Wittinghofer A. 2000. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J 19:4555-4564. https://doi.org/10.1093/emboj/19.17.4555.
-
(2000)
EMBO J
, vol.19
, pp. 4555-4564
-
-
Prakash, B.1
Renault, L.2
Praefcke, G.J.3
Herrmann, C.4
Wittinghofer, A.5
-
27
-
-
78650087176
-
Intracellular trafficking of guanylate-binding proteins is regulated by heterodimerization in a hi-erarchical manner
-
Britzen-Laurent N, Bauer M, Berton V, Fischer N, Syguda A, Reipschlager S, Naschberger E, Herrmann C, Sturzl M. 2010. Intracellular trafficking of guanylate-binding proteins is regulated by heterodimerization in a hi-erarchical manner. PLoS One 5:e14246. https://doi.org/10.1371/journal.pone.0014246.
-
(2010)
Plos One
, vol.5
-
-
Britzen-Laurent, N.1
Bauer, M.2
Berton, V.3
Fischer, N.4
Syguda, A.5
Reipschlager, S.6
Naschberger, E.7
Herrmann, C.8
Sturzl, M.9
-
28
-
-
85023185201
-
Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1
-
Shydlovskyi S, Zienert AY, Ince S, Dovengerds C, Hohendahl A, Dargazanli JM, Blum A, Gunther SD, Kladt N, Sturzl M, Schauss AC, Kutsch M, Roux A, Praefcke GJK, Herrmann C. 2017. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Proc Natl Acad Sci U S A 114:E5559-E5568. https://doi.org/10.1073/pnas.1620959114.
-
(2017)
Proc Natl Acad Sci U S A
, vol.114
, pp. E5559-E5568
-
-
Shydlovskyi, S.1
Zienert, A.Y.2
Ince, S.3
Dovengerds, C.4
Hohendahl, A.5
Dargazanli, J.M.6
Blum, A.7
Gunther, S.D.8
Kladt, N.9
Sturzl, M.10
Schauss, A.C.11
Kutsch, M.12
Roux, A.13
Praefcke, G.14
Herrmann, C.15
-
29
-
-
20844442306
-
Golgi targeting of human guanylate-binding protein-1 requires nucleotide binding, isoprenylation, and an IFN-gamma-inducible cofactor
-
Modiano N, Lu YE, Cresswell P. 2005. Golgi targeting of human guanylate-binding protein-1 requires nucleotide binding, isoprenylation, and an IFN-gamma-inducible cofactor. Proc Natl Acad Sci U S A 102: 8680-8685. https://doi.org/10.1073/pnas.0503227102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 8680-8685
-
-
Modiano, N.1
Lu, Y.E.2
Cresswell, P.3
-
30
-
-
85014152234
-
Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems
-
Feeley EM, Pilla-Moffett DM, Zwack EE, Piro AS, Finethy R, Kolb JP, Martinez J, Brodsky IE, Coers J. 2017. Galectin-3 directs antimicrobial guanylate binding proteins to vacuoles furnished with bacterial secretion systems. Proc Natl Acad Sci U S A 114:E1698-E1706. https://doi.org/10.1073/pnas.1615771114.
-
(2017)
Proc Natl Acad Sci U S A
, vol.114
, pp. E1698-E1706
-
-
Feeley, E.M.1
Pilla-Moffett, D.M.2
Zwack, E.E.3
Piro, A.S.4
Finethy, R.5
Kolb, J.P.6
Martinez, J.7
Brodsky, I.E.8
Coers, J.9
-
31
-
-
85031679815
-
Sweet host revenge: Galectins and GBPs join forces at broken membranes
-
27
-
Coers J. 27 October 2017. Sweet host revenge: galectins and GBPs join forces at broken membranes. Cell Microbiol https://doi.org/10.1111/cmi.12793.
-
(2017)
Cell Microbiol
-
-
Coers, J.1
-
32
-
-
0036178763
-
Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: Role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK
-
Kohler H, Rodrigues SP, McCormick BA. 2002. Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70: 1150-1158. https://doi.org/10.1128/IAI.70.3.1150-1158.2002.
-
(2002)
Infect Immun
, vol.70
, pp. 1150-1158
-
-
Kohler, H.1
Rodrigues, S.P.2
McCormick, B.A.3
-
33
-
-
0030049078
-
The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites
-
Mey A, Leffler H, Hmama Z, Normier G, Revillard JP. 1996. The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites. J Immunol 156:1572-1577.
-
(1996)
J Immunol
, vol.156
, pp. 1572-1577
-
-
Mey, A.1
Leffler, H.2
Hmama, Z.3
Normier, G.4
Revillard, J.P.5
-
34
-
-
0024362336
-
Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin
-
Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A 86:3867-3871. https://doi.org/10.1073/pnas.86.10.3867.
-
(1989)
Proc Natl Acad Sci U S A
, vol.86
, pp. 3867-3871
-
-
Bernardini, M.L.1
Mounier, J.2
D’Hauteville, H.3
Coquis-Rondon, M.4
Sansonetti, P.J.5
-
35
-
-
0036267949
-
Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway
-
Page AL, Sansonetti P, Parsot C. 2002. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol Microbiol 43:1533-1542. https://doi.org/10.1046/j.1365-2958.2002.02835.x.
-
(2002)
Mol Microbiol
, vol.43
, pp. 1533-1542
-
-
Page, A.L.1
Sansonetti, P.2
Parsot, C.3
-
36
-
-
20344407810
-
A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri
-
Parsot C, Ageron E, Penno C, Mavris M, Jamoussi K, d’Hauteville H, Sansonetti P, Demers B. 2005. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol Microbiol 56:1627-1635. https://doi.org/10.1111/j.1365-2958.2005.04645.x.
-
(2005)
Mol Microbiol
, vol.56
, pp. 1627-1635
-
-
Parsot, C.1
Ageron, E.2
Penno, C.3
Mavris, M.4
Jamoussi, K.5
D’Hauteville, H.6
Sansonetti, P.7
Demers, B.8
-
37
-
-
84899513407
-
A multifunctional region of the Shigella type 3 effector IpgB1 is important for secretion from bacteria and membrane targeting in eukaryotic cells
-
Costa SC, Lesser CF. 2014. A multifunctional region of the Shigella type 3 effector IpgB1 is important for secretion from bacteria and membrane targeting in eukaryotic cells. PLoS One 9:e93461. https://doi.org/10.1371/journal.pone.0093461.
-
(2014)
Plos One
, vol.9
-
-
Costa, S.C.1
Lesser, C.F.2
-
38
-
-
40949156258
-
IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexneri
-
Hachani A, Biskri L, Rossi G, Marty A, Menard R, Sansonetti P, Parsot C, Van Nhieu GT, Bernardini ML, Allaoui A. 2008. IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexneri. Microbes Infect 10:260-268. https://doi.org/10.1016/j.micinf.2007.11.011.
-
(2008)
Microbes Infect
, vol.10
, pp. 260-268
-
-
Hachani, A.1
Biskri, L.2
Rossi, G.3
Marty, A.4
Menard, R.5
Sansonetti, P.6
Parsot, C.7
Van Nhieu, G.T.8
Bernardini, M.L.9
Allaoui, A.10
-
39
-
-
33846199469
-
Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors
-
Ashida H, Toyotome T, Nagai T, Sasakawa C. 2007. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol 63:680-693. https://doi.org/10.1111/j.1365-2958.2006.05547.x.
-
(2007)
Mol Microbiol
, vol.63
, pp. 680-693
-
-
Ashida, H.1
Toyotome, T.2
Nagai, T.3
Sasakawa, C.4
-
40
-
-
0036335636
-
MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system
-
Kane CD, Schuch R, Day WA, Jr, Maurelli AT. 2002. MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system. J Bacteriol 184:4409-4419. https://doi.org/10.1128/JB.184.16.4409-4419.2002.
-
(2002)
J Bacteriol
, vol.184
, pp. 4409-4419
-
-
Kane, C.D.1
Schuch, R.2
Day, W.A.3
Maurelli, A.T.4
-
41
-
-
0036951970
-
Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri
-
Mavris M, Sansonetti PJ, Parsot C. 2002. Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri. J Bacteriol 184:6751-6759. https://doi.org/10.1128/JB.184.24.6751-6759.2002.
-
(2002)
J Bacteriol
, vol.184
, pp. 6751-6759
-
-
Mavris, M.1
Sansonetti, P.J.2
Parsot, C.3
-
42
-
-
84884688909
-
Self and non-self discrimination of intracellular membranes by the innate immune system
-
Coers J. 2013. Self and non-self discrimination of intracellular membranes by the innate immune system. PLoS Pathog 9:e1003538. https://doi.org/10.1371/journal.ppat.1003538.
-
(2013)
Plos Pathog
, vol.9
-
-
Coers, J.1
-
43
-
-
84879547102
-
IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins
-
Haldar AK, Saka HA, Piro AS, Dunn JD, Henry SC, Taylor GA, Frickel EM, Valdivia RH, Coers J. 2013. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of “self” IRGM proteins. PLoS Pathog 9:e1003414. https://doi.org/10.1371/journal.ppat.1003414.
-
(2013)
Plos Pathog
, vol.9
-
-
Haldar, A.K.1
Saka, H.A.2
Piro, A.S.3
Dunn, J.D.4
Henry, S.C.5
Taylor, G.A.6
Frickel, E.M.7
Valdivia, R.H.8
Coers, J.9
-
44
-
-
84944242576
-
Ubiquitin systems mark pathogencontaining vacuoles as targets for host defense by guanylate binding proteins
-
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel EM, Coers J. 2015. Ubiquitin systems mark pathogencontaining vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci U S A 112:E5628-E5637. https://doi.org/10.1073/pnas.1515966112.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E5628-E5637
-
-
Haldar, A.K.1
Foltz, C.2
Finethy, R.3
Piro, A.S.4
Feeley, E.M.5
Pilla-Moffett, D.M.6
Komatsu, M.7
Frickel, E.M.8
Coers, J.9
-
45
-
-
84990856288
-
IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes
-
Man SM, Karki R, Sasai M, Place DE, Kesavardhana S, Temirov J, Frase S, Zhu Q, Malireddi RKS, Kuriakose T, Peters JL, Neale G, Brown SA, Yamamoto M, Kanneganti TD. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167:382-396.e17. https://doi.org/10.1016/j.cell.2016.09.012.
-
(2016)
Cell
, vol.167
-
-
Man, S.M.1
Karki, R.2
Sasai, M.3
Place, D.E.4
Kesavardhana, S.5
Temirov, J.6
Frase, S.7
Zhu, Q.8
Malireddi, R.9
Kuriakose, T.10
Peters, J.L.11
Neale, G.12
Brown, S.A.13
Yamamoto, M.14
Kanneganti, T.D.15
-
46
-
-
33744509713
-
The interferon-inducible p47 (IRG) GTPases in vertebrates: Loss of the cell autonomous resistance mechanism in the human lineage
-
Bekpen C, Hunn JP, Rohde C, Parvanova I, Guethlein L, Dunn DM, Glowalla E, Leptin M, Howard JC. 2005. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol 6:R92. https://doi.org/10.1186/gb-2005-6-11-r92.
-
(2005)
Genome Biol
, vol.6
-
-
Bekpen, C.1
Hunn, J.P.2
Rohde, C.3
Parvanova, I.4
Guethlein, L.5
Dunn, D.M.6
Glowalla, E.7
Leptin, M.8
Howard, J.C.9
-
47
-
-
61449240361
-
Modeling infectious disease in mice: Co-adaptation and the role of host-specific IFNgamma responses
-
Coers J, Starnbach MN, Howard JC. 2009. Modeling infectious disease in mice: co-adaptation and the role of host-specific IFNgamma responses. PLoS Pathog 5:e1000333. https://doi.org/10.1371/journal.ppat.1000333.
-
(2009)
Plos Pathog
, vol.5
-
-
Coers, J.1
Starnbach, M.N.2
Howard, J.C.3
-
48
-
-
84877610008
-
Bacterial subversion of host innate immune pathways
-
Baxt LA, Garza-Mayers AC, Goldberg MB. 2013. Bacterial subversion of host innate immune pathways. Science 340:697-701. https://doi.org/10.1126/science.1235771.
-
(2013)
Science
, vol.340
, pp. 697-701
-
-
Baxt, L.A.1
Garza-Mayers, A.C.2
Goldberg, M.B.3
-
49
-
-
0031949975
-
Embryonic implantation in galectin 1/galectin 3 double mutant mice
-
Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F. 1998. Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev Dyn 211: 306-313. https://doi.org/10.1002/(SICI)1097-0177(199804)211:4_306::AID-AJA2_3.0.CO;2-L.
-
(1998)
Dev Dyn
, vol.211
, pp. 306-313
-
-
Colnot, C.1
Fowlis, D.2
Ripoche, M.A.3
Bouchaert, I.4
Poirier, F.5
-
50
-
-
84905262730
-
Improved vectors and genomewide libraries for CRISPR screening
-
Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genomewide libraries for CRISPR screening. Nat Methods 11:783-784. https://doi.org/10.1038/nmeth.3047.
-
(2014)
Nat Methods
, vol.11
, pp. 783-784
-
-
Sanjana, N.E.1
Shalem, O.2
Zhang, F.3
-
51
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-6645. https://doi.org/10.1073/pnas.120163297.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
52
-
-
0029973636
-
FACS-optimized mutants of the green fluorescent protein (GFP)
-
Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33-38. https://doi.org/10.1016/0378-1119(95)00685-0.
-
(1996)
Gene
, vol.173
, pp. 33-38
-
-
Cormack, B.P.1
Valdivia, R.H.2
Falkow, S.3
-
53
-
-
77956229835
-
Neutrophil antimicrobial proteins enhance Shigella flexneri adhesion and invasion
-
Eilers B, Mayer-Scholl A, Walker T, Tang C, Weinrauch Y, Zychlinsky A. 2010. Neutrophil antimicrobial proteins enhance Shigella flexneri adhesion and invasion. Cell Microbiol 12:1134-1143. https://doi.org/10.1111/j.1462-5822.2010.01459.x.
-
(2010)
Cell Microbiol
, vol.12
, pp. 1134-1143
-
-
Eilers, B.1
Mayer-Scholl, A.2
Walker, T.3
Tang, C.4
Weinrauch, Y.5
Zychlinsky, A.6
-
54
-
-
23844522843
-
The 5’ untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity
-
Shen A, Higgins DE. 2005. The 5’ untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol Microbiol 57:1460-1473. https://doi.org/10.1111/j.1365-2958.2005.04780.x.
-
(2005)
Mol Microbiol
, vol.57
, pp. 1460-1473
-
-
Shen, A.1
Higgins, D.E.2
-
55
-
-
79952303452
-
The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo
-
Meerbrey KL, Hu G, Kessler JD, Roarty K, Li MZ, Fang JE, Herschkowitz JI, Burrows AE, Ciccia A, Sun T, Schmitt EM, Bernardi RJ, Fu X, Bland CS, Cooper TA, Schiff R, Rosen JM, Westbrook TF, Elledge SJ. 2011. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A 108:3665-3670. https://doi.org/10.1073/pnas.1019736108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 3665-3670
-
-
Meerbrey, K.L.1
Hu, G.2
Kessler, J.D.3
Roarty, K.4
Li, M.Z.5
Fang, J.E.6
Herschkowitz, J.I.7
Burrows, A.E.8
Ciccia, A.9
Sun, T.10
Schmitt, E.M.11
Bernardi, R.J.12
Fu, X.13
Bland, C.S.14
Cooper, T.A.15
Schiff, R.16
Rosen, J.M.17
Westbrook, T.F.18
Elledge, S.J.19
-
56
-
-
33845764296
-
A guided tour into subcellular colocalization analysis in light microscopy
-
Bolte S, Cordelieres FP. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213-232. https://doi.org/10.1111/j.1365-2818.2006.01706.x.
-
(2006)
J Microsc
, vol.224
, pp. 213-232
-
-
Bolte, S.1
Cordelieres, F.P.2
|