메뉴 건너뛰기




Volumn 5, Issue 3, 2017, Pages

Industrial process monitoring in the big data/industry 4.0 era: From detection, to diagnosis, to prognosis

Author keywords

Equipment health; Fault detection and diagnosis; Industrial process monitoring; Process health; Prognosis

Indexed keywords


EID: 85034241924     PISSN: None     EISSN: 22279717     Source Type: Journal    
DOI: 10.3390/pr5030035     Document Type: Article
Times cited : (220)

References (141)
  • 1
    • 84962758025 scopus 로고    scopus 로고
    • Big data-challenges and future research directions
    • Reis, M.S.; Braatz, R.D.; Chiang, L.H. Big data-challenges and future research directions. Chem. Eng. Prog. 2016, 46-50
    • (2016) Chem. Eng. Prog , pp. 46-50
    • Reis, M.S.1    Braatz, R.D.2    Chiang, L.H.3
  • 2
    • 85034273804 scopus 로고    scopus 로고
    • 5 Things to Know about Big Data in Motion
    • (accessed on 1 May 2017)
    • Ebbers, M. 5 Things to Know about Big Data in Motion. Available online: https://www.ibm.com/developerworks/community/blogs/5things/entry/5_things_to_know_about_big_data_in_motion?lang= en (accessed on 1 May 2017)
    • Ebbers, M.1
  • 3
    • 84962711682 scopus 로고    scopus 로고
    • (accessed on 30 June 2017)
    • White, D. Big data-what is it? Chem. Eng. Prog. 2016, 32-35. Available online: https://www.aiche.org/resources/publications/cep/2016/march/big-data-what-it (accessed on 30 June 2017)
    • (2016) Big data-what is it? Chem. Eng. Prog , pp. 32-35
    • White, D.1
  • 4
    • 84962703100 scopus 로고    scopus 로고
    • Big data-getting started on the journey
    • (accessed on 30 June 2017)
    • Colegrove, L.F.; Seasholtz, M.B.; Khare, C. Big data-getting started on the journey. Chem. Eng. Prog. 2016, 41-45. Available online: https://www.aiche.org/resources/publications/cep/2016/march/big-datagetting-started-on-journey (accessed on 30 June 2017)
    • (2016) Chem. Eng. Prog , pp. 41-45
    • Colegrove, L.F.1    Seasholtz, M.B.2    Khare, C.3
  • 7
    • 84961115643 scopus 로고    scopus 로고
    • Statistical learning methods applied to process monitoring: An overview and perspective
    • Weese, M.; Martinez, W.; Megahed, F.M.; Jones-Farmer, L.A. Statistical learning methods applied to process monitoring: An overview and perspective. J. Qual. Technol. 2016, 48, 4-27
    • (2016) J. Qual. Technol , vol.48 , pp. 4-27
    • Weese, M.1    Martinez, W.2    Megahed, F.M.3    Jones-Farmer, L.A.4
  • 8
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Qin, S.J. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control 2012, 36, 220-234
    • (2012) Annu. Rev. Control , vol.36 , pp. 220-234
    • Qin, S.J.1
  • 9
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge, Z.; Song, Z.; Gao, F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52, 3543-3562
    • (2013) Ind. Eng. Chem. Res , vol.52 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 10
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • Page, E.S. Continuous inspection schemes. Biometrics 1954, 41, 100-115
    • (1954) Biometrics , vol.41 , pp. 100-115
    • Page, E.S.1
  • 11
    • 84946637626 scopus 로고
    • Control charts tests based on geometric moving averages
    • Roberts, S.W. Control charts tests based on geometric moving averages. Technometrics 1959, 1, 239-250
    • (1959) Technometrics , vol.1 , pp. 239-250
    • Roberts, S.W.1
  • 12
    • 0002199780 scopus 로고
    • Multivariate quality control, illustrated by the air testing of sample bombsights
    • Eisenhart, C., Hastay, M.W., Wallis, W.A., Eds.; McGraw-Hill: New York, NY, USA
    • Hotelling, H. Multivariate quality control, illustrated by the air testing of sample bombsights. In Selected Techniques of Statistical Analysis; Eisenhart, C., Hastay, M.W., Wallis, W.A., Eds.; McGraw-Hill: New York, NY, USA, 1947
    • (1947) Selected Techniques of Statistical Analysis
    • Hotelling, H.1
  • 13
    • 77955331694 scopus 로고
    • A multivariate exponentially weighted moving average control chart
    • Lowry, C.A.; Woodall, W.H.; Champ, C.W.; Rigdon, C.E. A multivariate exponentially weighted moving average control chart. Technometrics 1992, 34, 46-53
    • (1992) Technometrics , vol.34 , pp. 46-53
    • Lowry, C.A.1    Woodall, W.H.2    Champ, C.W.3    Rigdon, C.E.4
  • 14
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta, J.V.; MacGregor, J.F.; Marlin, T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69, 35-47
    • (1991) Can. J. Chem. Eng , vol.69 , pp. 35-47
    • Kresta, J.V.1    MacGregor, J.F.2    Marlin, T.E.3
  • 15
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis, using multivariate projection methods
    • Kourti, T.; MacGregor, J.F. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab. Syst. 1995, 28, 3-21
    • (1995) Chemom. Intell. Lab. Syst , vol.28 , pp. 3-21
    • Kourti, T.1    MacGregor, J.F.2
  • 16
    • 84863101603 scopus 로고
    • Quality control methods for several related variables
    • Jackson, J.E. Quality control methods for several related variables. Technometrics 1959, 1, 359-377
    • (1959) Technometrics , vol.1 , pp. 359-377
    • Jackson, J.E.1
  • 17
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson, J.E.; Mudholkar, G.S. Control procedures for residuals associated with principal component analysis. Technometrics 1979, 21, 341-349
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 18
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • Kourti, T.; MacGregor, J.F. Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 1996, 28, 409-428
    • (1996) J. Qual. Technol , vol.28 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 19
    • 18844397336 scopus 로고    scopus 로고
    • Application of latent variable methods to process control and multivariate statistical process control in industry
    • Kourti, T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt. Control Signal Process. 2005, 19, 213-246
    • (2005) Int. J. Adapt. Control Signal Process , vol.19 , pp. 213-246
    • Kourti, T.1
  • 21
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor, J.F.; Kourti, T. Statistical process control of multivariate processes. Control Eng. Pract. 1995, 3, 403-414
    • (1995) Control Eng. Pract , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 22
    • 80054753933 scopus 로고    scopus 로고
    • Process analytical technologies and real time process control a review of some spectroscopic issues and challenges
    • Chen, Z.; Lovett, D.; Morris, J. Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. J. Process Control 2011, 21, 1467-1482
    • (2011) J. Process Control , vol.21 , pp. 1467-1482
    • Chen, Z.1    Lovett, D.2    Morris, J.3
  • 23
    • 84858780519 scopus 로고    scopus 로고
    • Prediction of profiles in the process industries
    • Reis, M.S.; Saraiva, P.M. Prediction of profiles in the process industries. Ind. Eng. Chem. Res. 2012, 51, 4254-4266
    • (2012) Ind. Eng. Chem. Res , vol.51 , pp. 4254-4266
    • Reis, M.S.1    Saraiva, P.M.2
  • 24
    • 42549172648 scopus 로고    scopus 로고
    • Multiscale statistical process control of paper surface profiles
    • Reis, M.S.; Saraiva, P.M. Multiscale statistical process control of paper surface profiles. Qual. Technol. Quant. Manag. 2006, 3, 263-282
    • (2006) Qual. Technol. Quant. Manag , vol.3 , pp. 263-282
    • Reis, M.S.1    Saraiva, P.M.2
  • 25
    • 8344246718 scopus 로고    scopus 로고
    • Using control charts to monitor process and product quality profiles
    • Woodall, W.H.; Spitzner, D.J.; Montgomery, D.C.; Gupta, S. Using control charts to monitor process and product quality profiles. J. Qual. Technol. 2004, 36, 309-320
    • (2004) J. Qual. Technol , vol.36 , pp. 309-320
    • Woodall, W.H.1    Spitzner, D.J.2    Montgomery, D.C.3    Gupta, S.4
  • 26
    • 84867231649 scopus 로고    scopus 로고
    • Multivariate image analysis in the process industries: A review
    • Duchesne, C.; Liu, J.J.; MacGregor, J.F. Multivariate image analysis in the process industries: A review. Chemom. Intell. Lab. Syst. 2012, 117, 116-128
    • (2012) Chemom. Intell. Lab. Syst , vol.117 , pp. 116-128
    • Duchesne, C.1    Liu, J.J.2    MacGregor, J.F.3
  • 29
    • 58149177343 scopus 로고    scopus 로고
    • Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring
    • Reis, M.S.; Bauer, A. Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemom. Intell. Lab. Syst. 2009, 95, 129-137
    • (2009) Chemom Intell. Lab. Syst , vol.95 , pp. 129-137
    • Reis, M.S.1    Bauer, A.2
  • 30
    • 0000002118 scopus 로고
    • Some statistical process control methods for autocorrelated data
    • Montgomery, D.C.; Mastrangelo, C.M. Some statistical process control methods for autocorrelated data. J. Qual. Technol. 1991, 23, 179-193
    • (1991) J. Qual. Technol , vol.23 , pp. 179-193
    • Montgomery, D.C.1    Mastrangelo, C.M.2
  • 31
    • 0002298590 scopus 로고
    • Modification of control chart limits in the presence of data correlation
    • Vasilopoulos, A.V.; Stamboulis, A.P. Modification of control chart limits in the presence of data correlation. J. Qual. Technol. 1978, 10, 20-30
    • (1978) J. Qual. Technol , vol.10 , pp. 20-30
    • Vasilopoulos, A.V.1    Stamboulis, A.P.2
  • 32
    • 0041585479 scopus 로고    scopus 로고
    • Cusum charts for monitoring an autocorrelated process
    • Lu, C.-W.; Reynolds, M.R., Jr. Cusum charts for monitoring an autocorrelated process. J. Qual. Technol. 2001, 33, 316-334
    • (2001) J. Qual. Technol , vol.33 , pp. 316-334
    • Lu, C.-W.1    Reynolds, M.R.2
  • 33
    • 49749139426 scopus 로고    scopus 로고
    • EWMA control chart limits for first-and second-order autoregressive processes
    • Vermaat, M.B.; Does, R.J.M.M.; Bisgaard, S. EWMA control chart limits for first-and second-order autoregressive processes. Qual. Reliab. Eng. Int. 2008, 24, 573-584
    • (2008) Qual. Reliab. Eng. Int , vol.24 , pp. 573-584
    • Vermaat, M.B.1    Does, R.J.M.M.2    Bisgaard, S.3
  • 34
    • 0026108817 scopus 로고
    • Statistical process control procedures for correlated observations
    • Harris, T.J.; Ross, W.H. Statistical process control procedures for correlated observations. Can. J. Chem. Eng. 1991, 69, 48-57
    • (1991) Can. J. Chem. Eng , vol.69 , pp. 48-57
    • Harris, T.J.1    Ross, W.H.2
  • 35
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariable dynamic processes with state-space models
    • Negiz, A.; çinar, A. Statistical monitoring of multivariable dynamic processes with state-space models. AIChE J. 1997, 43, 2002-2020
    • (1997) AIChE J , vol.43 , pp. 2002-2020
    • Negiz, A.1    Çinar, A.2
  • 36
    • 0001940299 scopus 로고    scopus 로고
    • Dynamic multivariable statistical process control using partial least squares and canonical variate analysis
    • Simoglou, A.; Martin, E.B.; Morris, A.J. Dynamic multivariable statistical process control using partial least squares and canonical variate analysis. Comput. Chem. Eng. 1999, 23, S277-S280
    • (1999) Comput. Chem. Eng , vol.23 , pp. S277-S280
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 37
    • 0344944150 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using subspace identification
    • Treasure, R.J.; Kruger, U.; Cooper, J.E. Dynamic multivariate statistical process control using subspace identification. J. Process Control 2004, 14, 279-292
    • (2004) J. Process Control , vol.14 , pp. 279-292
    • Treasure, R.J.1    Kruger, U.2    Cooper, J.E.3
  • 38
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell, E.L.; Chiang, L.H.; Braatz, R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemom. Intell. Lab. Syst. 2000, 51, 81-93
    • (2000) Chemom. Intell. Lab. Syst , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 39
    • 84877316529 scopus 로고    scopus 로고
    • Fault detection in the Tennessee Eastman process using dynamic principal components analysis with decorrelated residuals (DPCA-dr)
    • Rato, T.J.; Reis, M.S. Fault detection in the Tennessee Eastman process using dynamic principal components analysis with decorrelated residuals (DPCA-dr). Chemom. Intell. Lab. Syst. 2013, 125, 101-108
    • (2013) Chemom. Intell. Lab. Syst , vol.125 , pp. 101-108
    • Rato, T.J.1    Reis, M.S.2
  • 40
    • 84884943728 scopus 로고    scopus 로고
    • Advantage of using decorrelated residuals in dynamic principal component analysis for monitoring large-scale systems
    • Rato, T.J.; Reis, M.S. Advantage of using decorrelated residuals in dynamic principal component analysis for monitoring large-scale systems. Ind. Eng. Chem. Res. 2013, 52, 13685-13698
    • (2013) Ind. Eng. Chem. Res , vol.52 , pp. 13685-13698
    • Rato, T.J.1    Reis, M.S.2
  • 41
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W.; Storer, R.H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 1995, 30, 179-196
    • (1995) Chemom. Intell. Lab. Syst , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 42
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process control
    • Bakshi, B.R. Multiscale PCA with application to multivariate statistical process control. AIChE J. 1998, 44, 1596-1610
    • (1998) AIChE J , vol.44 , pp. 1596-1610
    • Bakshi, B.R.1
  • 43
    • 52649146451 scopus 로고    scopus 로고
    • Multiscale statistical process control using wavelet packets
    • Reis, M.S.; Bakshi, B.R.; Saraiva, P.M. Multiscale statistical process control using wavelet packets. AIChE J. 2008, 54, 2366-2378
    • (2008) AIChE J , vol.54 , pp. 2366-2378
    • Reis, M.S.1    Bakshi, B.R.2    Saraiva, P.M.3
  • 44
    • 33744815945 scopus 로고    scopus 로고
    • Multiscale statistical process control with multiresolution data
    • Reis, M.S.; Saraiva, P.M. Multiscale statistical process control with multiresolution data. AIChE J. 2006, 52, 2107-2119
    • (2006) AIChE J , vol.52 , pp. 2107-2119
    • Reis, M.S.1    Saraiva, P.M.2
  • 45
    • 85034232201 scopus 로고    scopus 로고
    • Multiscale multivariate statistical process control
    • Baillieul, J., Samad, T., Eds.; Springer: London, UK
    • Morris, J. Multiscale multivariate statistical process control. In Encyclopedia of Systems and Control; Baillieul, J., Samad, T., Eds.; Springer: London, UK, 2014; pp. 1-7
    • (2014) Encyclopedia of Systems and Control , pp. 1-7
    • Morris, J.1
  • 46
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos, P.; MacGregor, J.F. Monitoring batch processes using multiway principal component analysis. AIChE J. 1994, 40, 1361-1375
    • (1994) AIChE J , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 47
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos, P.; MacGregor, J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37, 41-59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 48
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • Westerhuis, J.A.; Kourti, T.; MacGregor, J.F. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemom. 1998, 12, 301-321
    • (1998) J. Chemom , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 49
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • Westerhuis, J.A.; Kourti, T.; MacGregor, J.F. Comparing alternative approaches for multivariate statistical analysis of batch process data. J. Chemom. 1999, 13, 397-413
    • (1999) J. Chemom , vol.13 , pp. 397-413
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 50
    • 0037285311 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using a parafac representation
    • Meng, X.; Morris, A.J.; Martin, E.B. On-line monitoring of batch processes using a parafac representation. J. Chemom. 2003, 17, 65-81
    • (2003) J. Chemom , vol.17 , pp. 65-81
    • Meng, X.1    Morris, A.J.2    Martin, E.B.3
  • 52
    • 0442311040 scopus 로고    scopus 로고
    • Three-way data analysis with time lagged window for on-line batch process monitoring
    • Chen, J.; Yen, J.-H. Three-way data analysis with time lagged window for on-line batch process monitoring. Korean J. Chem. Eng. 2003, 20, 1000-1011
    • (2003) Korean J. Chem. Eng , vol.20 , pp. 1000-1011
    • Chen, J.1    Yen, J.-H.2
  • 53
    • 36849039411 scopus 로고    scopus 로고
    • Dynamic model-based batch process monitoring
    • Choi, S.W.; Morris, J.; Lee, I.-B. Dynamic model-based batch process monitoring. Chem. Eng. Sci. 2008, 63, 622-636
    • (2008) Chem. Eng. Sci , vol.63 , pp. 622-636
    • Choi, S.W.1    Morris, J.2    Lee, I.-B.3
  • 54
    • 78650046728 scopus 로고    scopus 로고
    • Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes
    • He, Q.P.;Wang, J. Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes. AIChE J. 2011, 57, 107-121
    • (2011) AIChE J , vol.57 , pp. 107-121
    • He, Q.P.1    Wang, J.2
  • 55
    • 84964585423 scopus 로고    scopus 로고
    • Translation invariant multiscale energy-based PCA (TIME-PCA) for monitoring batch processes in semiconductor manufacturing
    • Rato, T.J.; Blue, J.; Pinaton, J.; Reis, M.S. Translation invariant multiscale energy-based PCA (TIME-PCA) for monitoring batch processes in semiconductor manufacturing. IEEE Trans. Autom. Sci. Eng. 2017, 14, 894-904
    • (2017) IEEE Trans. Autom. Sci. Eng , vol.14 , pp. 894-904
    • Rato, T.J.1    Blue, J.2    Pinaton, J.3    Reis, M.S.4
  • 56
    • 84907567575 scopus 로고    scopus 로고
    • Non-causal data-driven monitoring of the process correlation structure: A comparison study with new methods
    • Rato, T.J.; Reis, M.S. Non-causal data-driven monitoring of the process correlation structure: A comparison study with new methods. Comput. Chem. Eng. 2014, 71, 307-322
    • (2014) Comput. Chem. Eng , vol.71 , pp. 307-322
    • Rato, T.J.1    Reis, M.S.2
  • 57
    • 84940174310 scopus 로고    scopus 로고
    • On-line process monitoring using local measures of association Part I: Detection performance
    • Rato, T.J.; Reis, M.S. On-line process monitoring using local measures of association. Part I: Detection performance. Chemom. Intell. Lab. Syst. 2015, 142, 255-264
    • (2015) Chemom. Intell. Lab. Syst , vol.142 , pp. 255-264
    • Rato, T.J.1    Reis, M.S.2
  • 58
    • 79959245830 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring based on statistics pattern analysis
    • Wang, J.; He, Q.P. Multivariate statistical process monitoring based on statistics pattern analysis. Ind. Eng. Chem. Res. 2010, 49, 7858-7869
    • (2010) Ind. Eng. Chem. Res , vol.49 , pp. 7858-7869
    • Wang, J.1    He, Q.P.2
  • 59
    • 84940194751 scopus 로고    scopus 로고
    • On-line process monitoring using local measures of association Part II: Design issues and fault diagnosis
    • Rato, T.J.; Reis, M.S. On-line process monitoring using local measures of association. Part II: Design issues and fault diagnosis. Chemom. Intell. Lab. Syst. 2015, 142, 265-275
    • (2015) Chemom. Intell. Lab. Syst , vol.142 , pp. 265-275
    • Rato, T.J.1    Reis, M.S.2
  • 60
    • 34547361213 scopus 로고    scopus 로고
    • Monitoring multivariate process variability for individual observations
    • Huwang, L.; Yeh, A.B.; Wu, C. Monitoring multivariate process variability for individual observations. J. Qual. Technol. 2007, 39, 258-278
    • (2007) J. Qual. Technol , vol.39 , pp. 258-278
    • Huwang, L.1    Yeh, A.B.2    Wu, C.3
  • 61
    • 33847746326 scopus 로고    scopus 로고
    • Step-down analysis for changes in the covariance matrix and other parameters
    • Sullivan, J.H.; Stoumbos, Z.G.; Mason, R.L.; Young, J.C. Step-down analysis for changes in the covariance matrix and other parameters. J. Qual. Technol. 2007, 39, 66-84
    • (2007) J. Qual. Technol , vol.39 , pp. 66-84
    • Sullivan, J.H.1    Stoumbos, Z.G.2    Mason, R.L.3    Young, J.C.4
  • 62
    • 43149088732 scopus 로고    scopus 로고
    • Distribition-free multivariate process control based on log-linear modeling
    • Qiu, P. Distribition-free multivariate process control based on log-linear modeling. IIE Trans. 2008, 40, 664-677
    • (2008) IIE Trans , vol.40 , pp. 664-677
    • Qiu, P.1
  • 63
    • 79951894804 scopus 로고    scopus 로고
    • Likelihood ratio-based distribution-free EWMA control charts
    • Zou, C.; Tsung, F. Likelihood ratio-based distribution-free EWMA control charts. J. Qual. Technol. 2010, 42, 174-196
    • (2010) J. Qual. Technol , vol.42 , pp. 174-196
    • Zou, C.1    Tsung, F.2
  • 64
    • 0042401516 scopus 로고    scopus 로고
    • Nonparametric control charts: An overview and some results
    • Chakraborti, S.; Van der Lan, P.; Bakir, S.T. Nonparametric control charts: An overview and some results. J. Qual. Technol. 2001, 33, 304-315
    • (2001) J. Qual. Technol , vol.33 , pp. 304-315
    • Chakraborti, S.1    Van der Lan, P.2    Bakir, S.T.3
  • 65
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin, E.B.; Morris, A.J. Non-parametric confidence bounds for process performance monitoring charts. J. Process Control 1996, 6, 349-358
    • (1996) J. Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 66
    • 84884928551 scopus 로고    scopus 로고
    • Analysis of smearing-out in contribution plot based fault isolation for statistical process control
    • Van den Kerkhof, P.; Vanlaer, J.; Gins, G.; Van Impe, J.F.M. Analysis of smearing-out in contribution plot based fault isolation for statistical process control. Chem. Eng. Sci. 2013, 104, 285-293
    • (2013) Chem. Eng. Sci , vol.104 , pp. 285-293
    • Van den Kerkhof, P.1    Vanlaer, J.2    Gins, G.3    Van Impe, J.F.M.4
  • 67
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • Westerhuis, J.A.; Gurden, S.P.; Smilde, A.K. Generalized contribution plots in multivariate statistical process monitoring. Chemom. Intell. Lab. Syst. 2000, 51, 95-114
    • (2000) Chemom. Intell. Lab. Syst , vol.51 , pp. 95-114
    • Westerhuis, J.A.1    Gurden, S.P.2    Smilde, A.K.3
  • 68
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue, H.H.; Qin, S.J. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40, 4403-4414
    • (2001) Ind. Eng. Chem. Res , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 69
    • 84941112597 scopus 로고    scopus 로고
    • Multivariate fault isolation via variable selection in discriminant analysis
    • Kuang, T.-H.; Yan, Z.; Yao, Y. Multivariate fault isolation via variable selection in discriminant analysis. J. Process Control 2015, 35, 30-40
    • (2015) J. Process Control , vol.35 , pp. 30-40
    • Kuang, T.-H.1    Yan, Z.2    Yao, Y.3
  • 70
    • 84930643835 scopus 로고    scopus 로고
    • Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO)
    • Yan, Z.; Yao, Y. Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO). Chemom. Intell. Lab. Syst. 2015, 146, 136-146
    • (2015) Chemom. Intell. Lab. Syst , vol.146 , pp. 136-146
    • Yan, Z.1    Yao, Y.2
  • 72
    • 84891456456 scopus 로고    scopus 로고
    • Some current directions in the theory and application of statistical process monitoring
    • Woodall, W.H.; Montgomery, D.C. Some current directions in the theory and application of statistical process monitoring. J. Qual. Technol. 2014, 46, 78-94
    • (2014) J. Qual. Technol , vol.46 , pp. 78-94
    • Woodall, W.H.1    Montgomery, D.C.2
  • 73
    • 0024062307 scopus 로고
    • Multivariate generalizations of cumulative sum quality-control schemes
    • Crosier, R.B. Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 1988, 30, 291-303
    • (1988) Technometrics , vol.30 , pp. 291-303
    • Crosier, R.B.1
  • 75
    • 0031117909 scopus 로고    scopus 로고
    • Control charts based o attribute data: Bibliography and review
    • Woodall, W.H. Control charts based o attribute data: Bibliography and review. J. Qual. Technol. 1997, 29, 172-183
    • (1997) J. Qual. Technol , vol.29 , pp. 172-183
    • Woodall, W.H.1
  • 77
    • 9544254890 scopus 로고    scopus 로고
    • An online application of dynamical PLS to a dearomatization process
    • Komulainen, T.; Sourander, M.; Jämsä-Jounela, S.L. An online application of dynamical PLS to a dearomatization process. Comput. Chem. Eng. 2004, 28, 2611-2619
    • (2004) Comput. Chem. Eng , vol.28 , pp. 2611-2619
    • Komulainen, T.1    Sourander, M.2    Jämsä-Jounela, S.L.3
  • 79
    • 61849101892 scopus 로고    scopus 로고
    • Multiway kernel independent component analysis based on feature samples for batch process monitoring
    • Tian, X.M.; Zhang, X.L.; Deng, X.G.; Chen, S. Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing 2009, 72, 1584-1596
    • (2009) Neurocomputing , vol.72 , pp. 1584-1596
    • Tian, X.M.1    Zhang, X.L.2    Deng, X.G.3    Chen, S.4
  • 80
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • Yoo, C.K.; Lee, J.-M.; Vanrolleghem, P.A.; Lee, I.-B. On-line monitoring of batch processes using multiway independent component analysis. Chemom. Intell. Lab. Syst. 2004, 71, 151-163
    • (2004) Chemom. Intell. Lab. Syst , vol.71 , pp. 151-163
    • Yoo, C.K.1    Lee, J.-M.2    Vanrolleghem, P.A.3    Lee, I.-B.4
  • 81
    • 36348941124 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using multiway kernel independent analysis
    • Zhang, Y.W.; Qin, S.J. Fault detection of non-linear processes using multiway kernel independent analysis. Ind. Eng. Chem. Res. 2007, 46, 7780-7787
    • (2007) Ind. Eng. Chem. Res , vol.46 , pp. 7780-7787
    • Zhang, Y.W.1    Qin, S.J.2
  • 82
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis
    • Zhao, C.H.; Gao, F.R.;Wang, F.L. Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis. Ind. Eng. Chem. Res. 2009, 48, 9163-9174
    • (2009) Ind. Eng. Chem. Res , vol.48 , pp. 9163-9174
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3
  • 83
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi, S.W.; Lee, I.-B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 2004, 59, 5897-5908
    • (2004) Chem. Eng. Sci , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.-B.2
  • 84
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee, J.-M.; Yoo, C.; Lee, I.-B. Fault detection of batch processes using multiway kernel principal component analysis. Comput. Chem. Eng. 2004, 28, 1837-1847
    • (2004) Comput. Chem. Eng , vol.28 , pp. 1837-1847
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 85
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part I-III
    • 313-326, 327-346
    • Venkatasubramanian, V.; Yin, R.R.K.; Kavuri, S.N. A review of process fault detection and diagnosis. Part I-III. Comput. Chem. Eng. 2003, 27, 293-311, 313-326, 327-346
    • (2003) Comput. Chem. Eng , vol.27 , pp. 293-311
    • Venkatasubramanian, V.1    Yin, R.R.K.2    Kavuri, S.N.3
  • 86
    • 0001346491 scopus 로고    scopus 로고
    • Controversies and contradictions in statistical process control
    • Woodall, W.H. Controversies and contradictions in statistical process control. J. Qual. Technol. 2000, 32, 341-350
    • (2000) J. Qual. Technol , vol.32 , pp. 341-350
    • Woodall, W.H.1
  • 87
    • 21844434004 scopus 로고    scopus 로고
    • Fault detection properties of global, local and time evolving models for batch process monitoring
    • Ramaker, H.-J.; van Sprang, E.N.;Westerhuis, J.A.; Smilde, A.K. Fault detection properties of global, local and time evolving models for batch process monitoring. J. Process Control 2005, 15, 799-805
    • (2005) J. Process Control , vol.15 , pp. 799-805
    • Ramaker, H.-J.1    van Sprang, E.N.2    Westerhuis, J.A.3    Smilde, A.K.4
  • 88
    • 84864457668 scopus 로고    scopus 로고
    • On assessing the performance of sequential procedures for detecting a change
    • Kenett, R.S.; Pollak, M. On assessing the performance of sequential procedures for detecting a change. Qual. Reliab. Eng. Int. 2012, 28, 500-507
    • (2012) Qual. Reliab. Eng. Int , vol.28 , pp. 500-507
    • Kenett, R.S.1    Pollak, M.2
  • 89
    • 79960982348 scopus 로고    scopus 로고
    • On multivariate control charts
    • Frisén, M. On multivariate control charts. Production 2011, 21, 235-241
    • (2011) Production , vol.21 , pp. 235-241
    • Frisén, M.1
  • 90
    • 84969662895 scopus 로고    scopus 로고
    • A systematic methodology for comparing batch process monitoring methods: Part I-Assessing detection strength
    • Rato, T.J.; Rendall, R.; Gomes, V.; Chin, S.-T.; Chiang, A.P.; Saraiva, P.; Reis, M.S. A systematic methodology for comparing batch process monitoring methods: Part I-Assessing detection strength. Ind. Eng. Chem. Res. 2016, 55, 5342-5358
    • (2016) Ind. Eng. Chem. Res , vol.55 , pp. 5342-5358
    • Rato, T.J.1    Rendall, R.2    Gomes, V.3    Chin, S.-T.4    Chiang, A.P.5    Saraiva, P.6    Reis, M.S.7
  • 91
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin, S.; Ding, S.X.; Haghani, A.; Hao, H.; Zhang, P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 2012, 22, 1567-1581
    • (2012) J. Process Control , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 94
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using causal map and multivariate statistics: Fault detection and identification
    • Chiang, L.H.; Braatz, R.D. Process monitoring using causal map and multivariate statistics: Fault detection and identification. Chemom. Intell. Lab. Syst. 2003, 65, 159-178
    • (2003) Chemom. Intell. Lab. Syst , vol.65 , pp. 159-178
    • Chiang, L.H.1    Braatz, R.D.2
  • 95
    • 58249086340 scopus 로고    scopus 로고
    • Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history
    • Thambirajah, J.; Benabbas, L.; Bauer, M.; Thornhill, N.F. Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history. Comput. Chem. Eng. 2009, 33, 503-512
    • (2009) Comput. Chem. Eng , vol.33 , pp. 503-512
    • Thambirajah, J.1    Benabbas, L.2    Bauer, M.3    Thornhill, N.F.4
  • 96
    • 44649180587 scopus 로고    scopus 로고
    • Fault diagnosis of the paper machine short circulation process using novel dynamic causal digraph reasoning
    • Cheng, H.; Nikus, M.; Jämsä-Jounela, S.-L. Fault diagnosis of the paper machine short circulation process using novel dynamic causal digraph reasoning. J. Process Control 2008, 18, 676-691
    • (2008) J. Process Control , vol.18 , pp. 676-691
    • Cheng, H.1    Nikus, M.2    Jämsä-Jounela, S.-L.3
  • 97
    • 84924733661 scopus 로고    scopus 로고
    • Diagnosis of multiple and unknown faults using the causal map and multivariate statistics
    • Chiang, L.H.; Jiang, B.; Zhu, X.; Huang, D.; Braatz, R.D. Diagnosis of multiple and unknown faults using the causal map and multivariate statistics. J. Process Control 2015, 28, 27-39
    • (2015) J. Process Control , vol.28 , pp. 27-39
    • Chiang, L.H.1    Jiang, B.2    Zhu, X.3    Huang, D.4    Braatz, R.D.5
  • 98
    • 78649480523 scopus 로고    scopus 로고
    • Effective fault detection an isolation using the bond graph-based domain decomposition
    • Zhang, X.; Hoo, K.A. Effective fault detection an isolation using the bond graph-based domain decomposition. Comput. Chem. Eng. 2011, 35, 132-148
    • (2011) Comput. Chem. Eng , vol.35 , pp. 132-148
    • Zhang, X.1    Hoo, K.A.2
  • 100
    • 0032825185 scopus 로고    scopus 로고
    • PCA-SDG based process monitoring and fault diagnosis
    • Vedam, H.; Venkatasubramanian, V. PCA-SDG based process monitoring and fault diagnosis. Control Eng. Pract. 1999, 7, 903-917
    • (1999) Control Eng. Pract , vol.7 , pp. 903-917
    • Vedam, H.1    Venkatasubramanian, V.2
  • 101
    • 84896320460 scopus 로고    scopus 로고
    • Root cause analysis in multivariate statistical process monitoring: Integrating reconstruction-based multivariate contribution analysis with fuzzy-signed directed graphs
    • He, B.; Chen, T.; Yang, X. Root cause analysis in multivariate statistical process monitoring: Integrating reconstruction-based multivariate contribution analysis with fuzzy-signed directed graphs. Comput. Chem. Eng. 2014, 64, 167-177
    • (2014) Comput. Chem. Eng , vol.64 , pp. 167-177
    • He, B.1    Chen, T.2    Yang, X.3
  • 103
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part II: Qualitative models and search strategies
    • Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S.N. A review of process fault detection and diagnosis. Part II: Qualitative models and search strategies. Comput. Chem. Eng. 2003, 27, 313-326
    • (2003) Comput. Chem. Eng , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 104
    • 0034282185 scopus 로고    scopus 로고
    • Statistical and causal model-based approaches to fault detection and isolation
    • Yoon, S.; MacGregor, J.F. Statistical and causal model-based approaches to fault detection and isolation. AIChE J. 2000, 46, 1813-1824
    • (2000) AIChE J , vol.46 , pp. 1813-1824
    • Yoon, S.1    MacGregor, J.F.2
  • 106
    • 24144448019 scopus 로고    scopus 로고
    • Applications of object-oriented bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes
    • Weidl, G.; Madsen, A.L.; Israelson, S. Applications of object-oriented bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes. Comput. Chem. Eng. 2005, 29, 1996-2009
    • (2005) Comput. Chem. Eng , vol.29 , pp. 1996-2009
    • Weidl, G.1    Madsen, A.L.2    Israelson, S.3
  • 107
    • 84879307272 scopus 로고    scopus 로고
    • A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation, identification, and root cause diagnosis
    • Yu, J.; Rashid, M.M. A novel dynamic bayesian network-based networked process monitoring approach for fault detection, propagation, identification, and root cause diagnosis. AIChE J. 2013, 59, 2348-2365
    • (2013) AIChE J , vol.59 , pp. 2348-2365
    • Yu, J.1    Rashid, M.M.2
  • 109
    • 44649107251 scopus 로고    scopus 로고
    • A practical method for identifying the propagation path of plant-wide disturbances
    • Bauer, M.; Thornhill, N.F. A practical method for identifying the propagation path of plant-wide disturbances. J. Process Control 2008, 18, 707-719
    • (2008) J. Process Control , vol.18 , pp. 707-719
    • Bauer, M.1    Thornhill, N.F.2
  • 111
    • 38048998501 scopus 로고    scopus 로고
    • Partial correlation-based algorithm for causal structure discovery with continuous variables
    • Ljubljana, Slovenia, 6-8 September 2007 Springer-Verlag: Ljubljana, Slovenia
    • Pellet, J.-P.; Elisseeff, A.A. Partial correlation-based algorithm for causal structure discovery with continuous variables. In Proceedings of the 7th International Conference on Intelligent Data Analysis, Ljubljana, Slovenia, 6-8 September 2007; Springer-Verlag: Ljubljana, Slovenia, 2007; pp. 229-239
    • (2007) Proceedings of the 7th International Conference on Intelligent Data Analysis , pp. 229-239
    • Pellet, J.-P.1    Elisseeff, A.A.2
  • 112
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • Fuente, A.D.L.; Bing, N.; Hoeschele, I.; Mendes, P. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 2004, 20, 3565-3574
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • Fuente, A.D.L.1    Bing, N.2    Hoeschele, I.3    Mendes, P.4
  • 113
    • 64249106690 scopus 로고    scopus 로고
    • Robustification of the PC-algorithm for directed acyclic graphs
    • Kalisch, M.; Bühlmann, P. Robustification of the PC-algorithm for directed acyclic graphs. J. Comput. Graph. Stat. 2008, 17, 773-789
    • (2008) J. Comput. Graph. Stat , vol.17 , pp. 773-789
    • Kalisch, M.1    Bühlmann, P.2
  • 114
    • 84903315318 scopus 로고    scopus 로고
    • Sensitivity enhancing transformations for monitoring the process correlation structure
    • Rato, T.J.; Reis, M.S. Sensitivity enhancing transformations for monitoring the process correlation structure. J. Process Control 2014, 24, 905-915
    • (2014) J. Process Control , vol.24 , pp. 905-915
    • Rato, T.J.1    Reis, M.S.2
  • 115
    • 84929713047 scopus 로고    scopus 로고
    • Multiscale and megavariate monitoring of the process networked structure: M2NET
    • Rato, T.J.; Reis, M.S. Multiscale and megavariate monitoring of the process networked structure: M2NET. J. Chemom. 2015, 29, 309-322
    • (2015) J. Chemom , vol.29 , pp. 309-322
    • Rato, T.J.1    Reis, M.S.2
  • 116
    • 85011654125 scopus 로고    scopus 로고
    • Markovian and non-markovian sensitivity enhancing transformations for process monitoring
    • Rato, T.J.; Reis, M.S. Markovian and non-markovian sensitivity enhancing transformations for process monitoring. Chem. Eng. Sci. 2017, 163, 223-233
    • (2017) Chem. Eng. Sci , vol.163 , pp. 223-233
    • Rato, T.J.1    Reis, M.S.2
  • 117
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • Alcala, C.F.; Qin, S.J. Reconstruction-based contribution for process monitoring. Automatica 2009, 45, 1593-1600
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 118
    • 84869508491 scopus 로고    scopus 로고
    • Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods
    • MacGregor, J.; Cinar, A. Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods. Comput. Chem. Eng. 2012, 47, 111-120
    • (2012) Comput. Chem. Eng , vol.47 , pp. 111-120
    • MacGregor, J.1    Cinar, A.2
  • 120
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis based complex chemical process monitoring
    • Yu, J. Localized fisher discriminant analysis based complex chemical process monitoring. AIChE J. 2011, 57, 1817-1828
    • (2011) AIChE J , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 122
    • 84952628377 scopus 로고    scopus 로고
    • SVM and PCA based fault classification approaches for complicated industrial processes
    • Jing, C.; Hou, J. SVM and PCA based fault classification approaches for complicated industrial processes. Neurocomputing 2015, 167, 636-642
    • (2015) Neurocomputing , vol.167 , pp. 636-642
    • Jing, C.1    Hou, J.2
  • 123
    • 84861479593 scopus 로고    scopus 로고
    • Fault diagnosis of a benchmark fermentation process: A comparative study of feature extraction and classification techniques
    • Monroy, I.; Villez, K.; Graells, M.; Venkatasubramanian, V. Fault diagnosis of a benchmark fermentation process: A comparative study of feature extraction and classification techniques. Bioprocess Biosyst. Eng. 2012, 35, 689-704
    • (2012) Bioprocess Biosyst. Eng , vol.35 , pp. 689-704
    • Monroy, I.1    Villez, K.2    Graells, M.3    Venkatasubramanian, V.4
  • 124
    • 84897108321 scopus 로고    scopus 로고
    • Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results
    • Ding, S.X. Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results. J. Process Control 2014, 24, 431-449
    • (2014) J. Process Control , vol.24 , pp. 431-449
    • Ding, S.X.1
  • 125
    • 84922368390 scopus 로고    scopus 로고
    • Improving classification-based diagnosis of batch processes through data selection and appropriate pretreatment
    • Gins, G.; Van den Kerkhof, P.; Vanlaer, J.; Van Impe, J. Improving classification-based diagnosis of batch processes through data selection and appropriate pretreatment. J. Process Control 2015, 26, 90-101
    • (2015) J. Process Control , vol.26 , pp. 90-101
    • Gins, G.1    Van den Kerkhof, P.2    Vanlaer, J.3    Van Impe, J.4
  • 128
    • 84906788607 scopus 로고    scopus 로고
    • An overview of classification algorithms for imbalanced dataset
    • Ganganwar, V. An overview of classification algorithms for imbalanced dataset. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 42-47
    • (2012) Int. J. Emerg. Technol. Adv. Eng , vol.2 , pp. 42-47
    • Ganganwar, V.1
  • 129
    • 84944034308 scopus 로고    scopus 로고
    • Statistical process monitoring with integration of data projection and one-class classification
    • Liu, Y.; Pan, Y.;Wang, Q.; Huang, D. Statistical process monitoring with integration of data projection and one-class classification. Chemom. Intell. Lab. Syst. 2015, 149, 1-11
    • (2015) Chemom. Intell. Lab. Syst , vol.149 , pp. 1-11
    • Liu, Y.1    Pan, Y.2    Wang, Q.3    Huang, D.4
  • 130
    • 84946012667 scopus 로고    scopus 로고
    • Novelty detection and multi-class classification in power distribution voltage waveforms
    • Lazzaretti, A.E.; Tax, D.M.J.; Neto, H.V.; Ferreira, V.H. Novelty detection and multi-class classification in power distribution voltage waveforms. Expert Syst. Appl. 2016, 45, 322-330
    • (2016) Expert Syst. Appl , vol.45 , pp. 322-330
    • Lazzaretti, A.E.1    Tax, D.M.J.2    Neto, H.V.3    Ferreira, V.H.4
  • 131
    • 84923063188 scopus 로고    scopus 로고
    • Simultaneous fault diagnosis using multi-class support vector machine in a dew point process
    • Pooyan, N.; Shahbazian, M.; Salahshoor, K.; Hadian, M. Simultaneous fault diagnosis using multi-class support vector machine in a dew point process. J. Nat. Gas Sci. Eng. 2015, 23, 373-379
    • (2015) J. Nat. Gas Sci. Eng , vol.23 , pp. 373-379
    • Pooyan, N.1    Shahbazian, M.2    Salahshoor, K.3    Hadian, M.4
  • 132
    • 84978984903 scopus 로고    scopus 로고
    • Extending process monitoring to simultaneous false alarm rejection and fault identification (FARFI)
    • Gins, G.; Wuyts, S.; Van den Zegel, S.; Van Impe, J. Extending process monitoring to simultaneous false alarm rejection and fault identification (FARFI). Lect. Notes Comput. Sci. 2016
    • (2016) Lect. Notes Comput. Sci
    • Gins, G.1    Wuyts, S.2    Van den Zegel, S.3    Van Impe, J.4
  • 133
    • 68249091064 scopus 로고    scopus 로고
    • High-dimensional process monitoring and fault isolation via variable selection
    • Wang, K.; Jiang, W. High-dimensional process monitoring and fault isolation via variable selection. J. Qual. Technol. 2009, 41, 247-258
    • (2009) J. Qual. Technol , vol.41 , pp. 247-258
    • Wang, K.1    Jiang, W.2
  • 134
    • 79961042386 scopus 로고    scopus 로고
    • A LASSO-based diagnostic framework for multivariate statistical process control
    • Zou, C.; Jiang, W.; Tsung, F. A LASSO-based diagnostic framework for multivariate statistical process control. Technometrics 2011, 53, 297-309
    • (2011) Technometrics , vol.53 , pp. 297-309
    • Zou, C.1    Jiang, W.2    Tsung, F.3
  • 135
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven soft sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven soft sensors in the process industry. Comput. Chem. Eng. 2009, 33, 795-814
    • (2009) Comput. Chem. Eng , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 136
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko, H.; Funatsu, K. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy. Chemom. Intell. Lab. Syst. 2011, 109, 197-206
    • (2011) Chemom. Intell. Lab. Syst , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 137
    • 79953814457 scopus 로고    scopus 로고
    • Soft sensor design by multivariate fusion of image features and process measurements
    • Lin, B.; Jørgensen, S.B. Soft sensor design by multivariate fusion of image features and process measurements. J. Process Control 2011, 21, 547-553
    • (2011) J. Process Control , vol.21 , pp. 547-553
    • Lin, B.1    Jørgensen, S.B.2
  • 138
    • 84924813762 scopus 로고    scopus 로고
    • Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach
    • Shang, C.; Huang, X.; Suykens, J.A.K.; Huang, D. Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach. J. Process Control 2015, 28, 17-26
    • (2015) J. Process Control , vol.28 , pp. 17-26
    • Shang, C.1    Huang, X.2    Suykens, J.A.K.3    Huang, D.4
  • 139
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft-sensor for a ldpe plant
    • Sharmin, R.; Sundararaj, U.; Shah, S.; Griend, L.V.; Sun, Y.J. Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft-sensor for a ldpe plant. Chem. Eng. Sci. 2006, 61, 6372-6384
    • (2006) Chem. Eng. Sci , vol.61 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.J.5
  • 140
    • 85019603331 scopus 로고    scopus 로고
    • Multiresolution soft sensors (MR-SS): A new class of model structures for handling multiresolution data
    • Rato, T.J.; Reis, M.S. Multiresolution soft sensors (MR-SS): A new class of model structures for handling multiresolution data. Ind. Eng. Chem. Res. 2017, 56, 3640-3654
    • (2017) Ind. Eng. Chem. Res , vol.56 , pp. 3640-3654
    • Rato, T.J.1    Reis, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.