메뉴 건너뛰기




Volumn 35, Issue 5, 2012, Pages 689-704

Fault diagnosis of a benchmark fermentation process: A comparative study of feature extraction and classification techniques

Author keywords

ANN; Fault diagnosis; Fermentation processes; MICA; MPCA; SVM

Indexed keywords

ANN; BATCH PROCESS; CLASSIFICATION ALGORITHM; CLASSIFICATION METHODS; COMPARATIVE STUDIES; DIAGNOSIS PERFORMANCE; FEATURE EXTRACTION AND CLASSIFICATION; FEATURE EXTRACTION METHODS; FEATURE EXTRACTION TECHNIQUES; FERMENTATION PROCESS; MINIMAL EFFECTS; MIXING POWER; MPCA; SIMULATED DATA; SVM;

EID: 84861479593     PISSN: 16157591     EISSN: 16157605     Source Type: Journal    
DOI: 10.1007/s00449-011-0649-1     Document Type: Article
Times cited : (25)

References (50)
  • 1
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: Penicillin production
    • DOI 10.1016/S0098-1354(02)00127-8, PII S0098135402001278
    • Birol G, Ündey C, Çinar A (2002) A modular simulation package for fed-batch fermentation: penicillin production. Comput Chem Eng 26:1553-1565 (Pubitemid 35192176)
    • (2002) Computers and Chemical Engineering , vol.26 , Issue.11 , pp. 1553-1565
    • Birol, G.1    Undey, C.2    Cinar, A.3
  • 2
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • DOI 10.1016/j.chemolab.2004.02.002, PII S0169743904000474
    • Yoo C, Lee P, Vanrolleghem PA, Lee I (2004) On-line monitoring of batch processes using multiway independent component analysis. Chemom Intell Lab Syst 71:151-163 (Pubitemid 38591486)
    • (2004) Chemometrics and Intelligent Laboratory Systems , vol.71 , Issue.2 , pp. 151-163
    • Yoo, C.K.1    Lee, J.-M.2    Vanrolleghem, P.A.3    Lee, I.-B.4
  • 3
    • 61849101892 scopus 로고    scopus 로고
    • Multiway kernel independent component analysis based on feature samples for batch process monitoring
    • Tian X, Zhang X, Deng X, Chen S (2009) Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing 72:1584-1596
    • (2009) Neurocomputing , vol.72 , pp. 1584-1596
    • Tian, X.1    Zhang, X.2    Deng, X.3    Chen, S.4
  • 4
    • 77955475972 scopus 로고    scopus 로고
    • Monitoring bioreactors using principal component analysis: Production of penicillin G acylase as a case study
    • Nucci ER, Cruz AJG, Giordano RC (2010) Monitoring bioreactors using principal component analysis: production of penicillin G acylase as a case study. Bioprocess Biosyst Eng 33:557-564
    • (2010) Bioprocess Biosyst Eng , vol.33 , pp. 557-564
    • Nucci, E.R.1    Cruz, A.J.G.2    Giordano, R.C.3
  • 7
    • 0036805513 scopus 로고    scopus 로고
    • Process analysis and abnormal situation detection: From theory to practice
    • Kourti T (2002) Process analysis and abnormal situation detection: from theory to practice. IEEE Control Syst Mag 22:10-25
    • (2002) IEEE Control Syst Mag , vol.22 , pp. 10-25
    • Kourti, T.1
  • 9
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • Westerhuis J, Kourti T, MacGregor J (1999) Comparing alternative approaches for multivariate statistical analysis of batch process data. J Chemom 13:379-396
    • (1999) J Chemom , vol.13 , pp. 379-396
    • Westerhuis, J.1    Kourti, T.2    MacGregor, J.3
  • 10
    • 0033559909 scopus 로고    scopus 로고
    • Translating third-order data analysis methods to chemical batch processes
    • DOI 10.1016/S0169-7439(98)00183-X, PII S016974399800183X
    • Dahl S, Piovoso M, Kosanovich K (1999) Translating third-order data analysis methods to chemical batch processes. Chemom Intell Syst 46:161-180 (Pubitemid 29098983)
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.46 , Issue.2 , pp. 161-180
    • Dahl, K.S.1    Piovoso, M.J.2    Kosanovich, K.A.3
  • 11
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P, MacGregor J (1995) Multivariate SPC charts for monitoring batch processes. Technometrics 37:41-59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.2
  • 12
    • 0028483476 scopus 로고
    • Monitoring of batch processes using multiway principal component analysis
    • Nomikos P, MacGregor J (1994) Monitoring of batch processes using multiway principal component analysis. AIChE J 40:1361-1375
    • (1994) AIChE J , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.2
  • 13
    • 0032179394 scopus 로고    scopus 로고
    • Multivariate statistical analysis of an emulsion batch process
    • Neogi D, Schlags CE (1998) Multivariate statistical analysis of an emulsion batch process. Ind Eng Chem Res 37:3971-4979
    • (1998) Ind Eng Chem Res , vol.37 , pp. 3971-4979
    • Neogi, D.1    Schlags, C.E.2
  • 16
    • 0142154953 scopus 로고    scopus 로고
    • Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods
    • Ündey C, Tatara E, Çinar A (2003) Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods. Eng Appl Artif Intell 16:555-566
    • (2003) Eng Appl Artif Intell , vol.16 , pp. 555-566
    • Ündey, C.1    Tatara, E.2    Çinar, A.3
  • 17
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part I: Quantitative model-based methods
    • DOI 10.1016/S0098-1354(02)00160-6, PII S0098135402001606
    • Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis. Part I: quantitative model-based methods. Comput Chem Eng 27:293-311 (Pubitemid 36285962)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 18
    • 0026703680 scopus 로고
    • A knowledge based system for diagnosing microbial activities during a fermentation process
    • Pokkinen M, Flores Z, Asama H, Endo I, Aarts R, Linko P (1992) A knowledge based system for diagnosing microbial activities during a fermentation process. Bioprocess Biosyst Eng 7:331-334
    • (1992) Bioprocess Biosyst Eng , vol.7 , pp. 331-334
    • Pokkinen, M.1    Flores, Z.2    Asama, H.3    Endo, I.4    Aarts, R.5    Linko, P.6
  • 19
    • 81755172025 scopus 로고    scopus 로고
    • Prediction of problematic wine fermentations using artificial neural networks
    • Román RC, Hernández OG, Urtubia UA (2011) Prediction of problematic wine fermentations using artificial neural networks. Bioprocess Biosyst Eng 34:1057-1065
    • (2011) Bioprocess Biosyst Eng , vol.34 , pp. 1057-1065
    • Román, R.C.1    Hernández, O.G.2    Urtubia, U.A.3
  • 21
    • 0542375635 scopus 로고
    • Monitoring batch processes
    • Reklaitis GV et al (eds) Batch processing systems engineering
    • MacGregor JF, Nomikos P (1991) Monitoring batch processes. In: Reklaitis GV et al (eds) Batch processing systems engineering, NATO ASI Series F, vol 143. pp 241-258
    • (1991) NATO ASI Series F , vol.143 , pp. 241-258
    • MacGregor, J.F.1    Nomikos, P.2
  • 22
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin S (2003) Statistical process monitoring: basics and beyond. J Chemom 17:480-502
    • (2003) J Chemom , vol.17 , pp. 480-502
    • Qin, S.1
  • 24
    • 33845485486 scopus 로고    scopus 로고
    • Multivariate SPC of a sequencing batch reactor for wastewater treatment
    • DOI 10.1016/j.chemolab.2006.05.003, PII S0169743906000840
    • Aguado D, Ferrer J, Seco A (2007) Multivariate SPC of a sequencing batch reactor for wastewater treatment. Chemom Intell Lab Syst 85:82-93 (Pubitemid 44918160)
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.85 , Issue.1 , pp. 82-93
    • Aguado, D.1    Ferrer, A.2    Ferrer, J.3    Seco, A.4
  • 25
    • 63249113521 scopus 로고    scopus 로고
    • Use of unfold PCA for on-line plant stress monitoring and sensor failure detection
    • Villez K, Steppe K, De Pauw DJW (2009) Use of unfold PCA for on-line plant stress monitoring and sensor failure detection. Biosyst Eng 103:23-34
    • (2009) Biosyst Eng , vol.103 , pp. 23-34
    • Villez, K.1    Steppe, K.2    De Pauw, D.J.W.3
  • 26
    • 1542408546 scopus 로고    scopus 로고
    • Application of multiway ICA for on-line process monitoring of a sequencing batch reactor
    • DOI 10.1016/j.watres.2004.01.006, PII S0043135404000235
    • Yoo C, Lee D, Vanrolleghem PA (2004) Application of multiway ICA for on-line process monitoring of a sequencing batch reactor. Water Res 38:1715-1732 (Pubitemid 38333148)
    • (2004) Water Research , vol.38 , Issue.7 , pp. 1715-1732
    • Yoo, C.K.1    Lee, D.S.2    Vanrolleghem, P.A.3
  • 27
    • 0024905756 scopus 로고
    • Neural network methodology for process fault diagnosis
    • Venkatasubramanian V, Chan K (1989) A neural network methodology for process fault diagnosis. AIChE J 35:1993-2002 (Pubitemid 20623668)
    • (1989) AIChE Journal , vol.35 , Issue.12 , pp. 1993-2002
    • Venkatasubramanian, V.1    Chan, K.2
  • 28
    • 0027543492 scopus 로고
    • Representing bounded fault classes using neural networks with ellipsoidal activation functions
    • DOI 10.1016/0098-1354(93)80011-B
    • Kavuri S, Venkatasubramanian V (1993) Representing bounded fault classes using neural networks with ellipsoidal activation functions. Comput Chem Eng 17:139-163 (Pubitemid 23633377)
    • (1993) Computers and Chemical Engineering , vol.17 , Issue.2 , pp. 139-163
    • Kavuri, S.N.1    Vienkatasubramanian, V.2
  • 29
    • 0040287998 scopus 로고
    • Artificial neural network models of knowledge representation in chemical engineering
    • Hoskins JC, Himmelblau DM (1988) Artificial neural network models of knowledge representation in chemical engineering. Comput Chem Eng 2:881-890
    • (1988) Comput Chem Eng , vol.2 , pp. 881-890
    • Hoskins, J.C.1    Himmelblau, D.M.2
  • 30
    • 0024764296 scopus 로고
    • Incipient fault diagnosis of chemical processes via artificial neural networks
    • Watanabe K, Matsuura I, Abe M, Kubota M, Himmelblau DM (1989) Incipient fault diagnosis of chemical processes via artificial neural networks. AIChE J 35:1803-1812
    • (1989) AIChE J , vol.35 , pp. 1803-1812
    • Watanabe, K.1    Matsuura, I.2    Abe, M.3    Kubota, M.4    Himmelblau, D.M.5
  • 31
    • 0034661359 scopus 로고    scopus 로고
    • Neural network based framework for fault diagnosis in batch chemical plants
    • DOI 10.1016/S0098-1354(00)00371-9, PII S0098135400003719
    • Ruiz D, Nougués JM, Calderón Z, Espuña A, Puigjaner L (2000) Neural network based framework for fault diagnosis in batch chemical plants. Comput Chem Eng 24:777-784 (Pubitemid 30608315)
    • (2000) Computers and Chemical Engineering , vol.24 , Issue.2-7 , pp. 777-784
    • Ruiz, D.1    Nougues, J.M.2    Calderon, Z.3    Espuna, A.4    Puigjaner, L.5
  • 33
    • 0031673765 scopus 로고    scopus 로고
    • Fault detection and diagnosis using statistical control charts and artificial neural networks
    • PII S0954181096000398
    • Leger R, Garland Wm, Poehlman W (1998) Fault detection and diagnosis using statistical control charts and artificial neural networks. Artif Intell Eng 12:35-47 (Pubitemid 128390184)
    • (1998) Artificial Intelligence in Engineering , vol.12 , Issue.1-2 , pp. 35-47
    • Leger, R.P.1    Garland, W..J.2    Poehlman, W.F.S.3
  • 36
    • 35948929058 scopus 로고    scopus 로고
    • Simultaneous fault diagnosis in chemical plants using a multilabel approach
    • DOI 10.1002/aic.11313
    • Yélamos I, Graells M, Puigjaner L, Escudero G (2007) Simultaneous fault diagnosis in chemical plants using a multilabel approach. AIChE J 53:2871-2884 (Pubitemid 350074580)
    • (2007) AIChE Journal , vol.53 , Issue.11 , pp. 2871-2884
    • Yelamos, I.1    Graells, M.2    Puigjaner, L.3    Escudero, G.4
  • 37
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • DOI 10.1016/j.compchemeng.2003.10.002, PII S0098135403002618
    • Chiang L, Kotanchek M, Kordon A (2004) Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput Chem Eng 28:1389-1401 (Pubitemid 38609090)
    • (2004) Computers and Chemical Engineering , vol.28 , Issue.8 , pp. 1389-1401
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 38
    • 25844517176 scopus 로고    scopus 로고
    • Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process
    • DOI 10.1016/j.compchemeng.2005.06.006, PII S0098135405001614
    • Kulkarni A, Jayaraman V, Kulkarni B (2005) Knowledge incorporated support vector machines to detect faults in Tennessee Eastman Process. Comput Chem Eng 29:2128-2133 (Pubitemid 41393566)
    • (2005) Computers and Chemical Engineering , vol.29 , Issue.10 , pp. 2128-2133
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 39
    • 33846031976 scopus 로고    scopus 로고
    • On-line fault detection using SVM-based dynamic MPLS for batch processes
    • Yunfeng L, Zhifeng W, Jingqi Y (2006) On-line fault detection using SVM-based dynamic MPLS for batch processes. Chin J Chem Eng 14:754-758
    • (2006) Chin J Chem Eng , vol.14 , pp. 754-758
    • Yunfeng, L.1    Zhifeng, W.2    Jingqi, Y.3
  • 42
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor JF, Kourti T (1995) Statistical process control of multivariate processes. Control Eng Pract 3:403-414
    • (1995) Control Eng Pract , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 43
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson JE, Mudholkar GS (1979) Control procedures for residuals associated with principal component analysis. Technometrics 21:341-349 (Pubitemid 9472204)
    • (1979) Technometrics , vol.21 , Issue.3 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 46
    • 65449169571 scopus 로고    scopus 로고
    • The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?
    • Camacho J, Picó J, Ferrer A (2009) The best approaches in the on-line monitoring of batch processes based on PCA: does the modelling structure matter? Anal Chim Acta 642:59-68
    • (2009) Anal Chim Acta , vol.642 , pp. 59-68
    • Camacho, J.1    Picó, J.2    Ferrer, A.3
  • 48
    • 0010183975 scopus 로고
    • Machine literature searching: VIII. Operational criteria for designing information retrieval systems
    • Kent A, Berry M, Luehrs F, Perry J (1955) Machine literature searching: VIII. Operational criteria for designing information retrieval systems. American Documentation 6:93-101
    • (1955) American Documentation , vol.6 , pp. 93-101
    • Kent, A.1    Berry, M.2    Luehrs, F.3    Perry, J.4
  • 49
    • 77950367567 scopus 로고    scopus 로고
    • A semi-supervised approach to fault diagnosis for chemical processes
    • Monroy I, Benitez R, Escudero G, Graells M (2010) A semi-supervised approach to fault diagnosis for chemical processes. Comput Chem Eng 34:631-642
    • (2010) Comput Chem Eng , vol.34 , pp. 631-642
    • Monroy, I.1    Benitez, R.2    Escudero, G.3    Graells, M.4
  • 50
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Huang S-C, Huang Y-F (1991) Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans Neural Netw 2:47-55
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 47-55
    • Huang, S.-C.1    Huang, Y.-F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.