메뉴 건너뛰기




Volumn 146, Issue , 2015, Pages 136-146

Variable selection method for fault isolation using least absolute shrinkage and selection operator (LASSO)

Author keywords

Fault isolation; Least absolute shrinkage and selection operator; Multivariate statistical process monitoring; Quadratic programming; Variable selection

Indexed keywords

ARTICLE; COMPUTER ANALYSIS; COMPUTER PROGRAM; LEARNING ALGORITHM; LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR; LINEAR REGRESSION ANALYSIS; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MATHEMATICAL VARIABLE; MULTIVARIATE ANALYSIS; PRIORITY JOURNAL; PROCESS CONTROL; PROCESS DESIGN; PROCESS MODEL; PROCESS MONITORING; PROCESS OPTIMIZATION; QUALITY CONTROL; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICAL PARAMETERS; SYSTEM ANALYSIS; VARIABLE SELECTION METHOD;

EID: 84930643835     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.05.019     Document Type: Article
Times cited : (79)

References (41)
  • 1
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang L.H., Kotanchek M.E., Kordon A.K. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput. Chem. Eng. 2004, 28:1389-1401.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1389-1401
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 2
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Qin S.J. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control. 2012, 36:220-234.
    • (2012) Annu. Rev. Control. , vol.36 , pp. 220-234
    • Qin, S.J.1
  • 4
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: a missing link in multivariate quality control
    • Miller P., Swanson R., Heckler C. Contribution plots: a missing link in multivariate quality control. Appl. Math. Comput. Sci. 1998, 8:775-792.
    • (1998) Appl. Math. Comput. Sci. , vol.8 , pp. 775-792
    • Miller, P.1    Swanson, R.2    Heckler, C.3
  • 5
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • Westerhuis J., Gurden S., Smilde A. Generalized contribution plots in multivariate statistical process monitoring. Chemom. Intell. Lab. Syst. 2000, 51:95-114.
    • (2000) Chemom. Intell. Lab. Syst. , vol.51 , pp. 95-114
    • Westerhuis, J.1    Gurden, S.2    Smilde, A.3
  • 6
    • 84884928551 scopus 로고    scopus 로고
    • Analysis of smearing-out in contribution plot based fault isolation for statistical process control
    • Van den Kerkhof P., Vanlaer J., Gins G., Van Impe J.F.M. Analysis of smearing-out in contribution plot based fault isolation for statistical process control. Chem. Eng. Sci. 2013, 104:285-293.
    • (2013) Chem. Eng. Sci. , vol.104 , pp. 285-293
    • Van den Kerkhof, P.1    Vanlaer, J.2    Gins, G.3    Van Impe, J.F.M.4
  • 7
    • 84892996353 scopus 로고    scopus 로고
    • Bayesian filtering of the smearing effect: fault isolation in chemical process monitoring
    • Liu J., Wong D.S.H., Chen D.-S. Bayesian filtering of the smearing effect: fault isolation in chemical process monitoring. J. Process Control 2014, 24:1-21.
    • (2014) J. Process Control , vol.24 , pp. 1-21
    • Liu, J.1    Wong, D.S.H.2    Chen, D.-S.3
  • 8
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • Dunia R., Qin S. Subspace approach to multidimensional fault identification and reconstruction. AICHE J. 1998, 44:1813-1831.
    • (1998) AICHE J. , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.2
  • 9
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40:4403-4414.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 10
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • Alcala C.F., Qin S.J. Reconstruction-based contribution for process monitoring. Automatica 2009, 45:1593-1600.
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 11
    • 78149280345 scopus 로고    scopus 로고
    • A branch and bound method for isolation of faulty variables through missing variable analysis
    • Kariwala V., Odiowei P.E., Cao Y., Chen T. A branch and bound method for isolation of faulty variables through missing variable analysis. J. Process Control 2010, 20:1198-1206.
    • (2010) J. Process Control , vol.20 , pp. 1198-1206
    • Kariwala, V.1    Odiowei, P.E.2    Cao, Y.3    Chen, T.4
  • 12
    • 84864301166 scopus 로고    scopus 로고
    • Reconstruction-based multivariate contribution analysis for fault isolation: a branch and bound approach
    • He B., Yang X., Chen T., Zhang J. Reconstruction-based multivariate contribution analysis for fault isolation: a branch and bound approach. J. Process Control 2012, 22:1228-1236.
    • (2012) J. Process Control , vol.22 , pp. 1228-1236
    • He, B.1    Yang, X.2    Chen, T.3    Zhang, J.4
  • 13
    • 0031192302 scopus 로고    scopus 로고
    • Fault diagnosis based on weighted symptom tree and pattern matching
    • Oh Y.S., Mo K.J., Yoon E.S., Yoon J.H. Fault diagnosis based on weighted symptom tree and pattern matching. Ind. Eng. Chem. Res. 1997, 36:2672-2678.
    • (1997) Ind. Eng. Chem. Res. , vol.36 , pp. 2672-2678
    • Oh, Y.S.1    Mo, K.J.2    Yoon, E.S.3    Yoon, J.H.4
  • 14
    • 1842509240 scopus 로고    scopus 로고
    • Fault detection and operation mode identification based on pattern classification with variable selection
    • Chu Y., Qin S., Han C. Fault detection and operation mode identification based on pattern classification with variable selection. Ind. Eng. Chem. Res. 2004, 43:1701-1710.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 1701-1710
    • Chu, Y.1    Qin, S.2    Han, C.3
  • 15
    • 33644999955 scopus 로고    scopus 로고
    • Integration of principal component analysis and fuzzy logic systems for comprehensive process fault detection and diagnosis
    • Musulin E., Yélamos I., Puigjaner L. Integration of principal component analysis and fuzzy logic systems for comprehensive process fault detection and diagnosis. Ind. Eng. Chem. Res. 2006, 45:1739-1750.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 1739-1750
    • Musulin, E.1    Yélamos, I.2    Puigjaner, L.3
  • 16
    • 84881418463 scopus 로고    scopus 로고
    • Mixture discriminant monitoring: a hybrid method for statistical process monitoring and fault diagnosis/isolation
    • Huang C.-C., Chen T., Yao Y. Mixture discriminant monitoring: a hybrid method for statistical process monitoring and fault diagnosis/isolation. Ind. Eng. Chem. Res. 2013, 52:10720-10731.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 10720-10731
    • Huang, C.-C.1    Chen, T.2    Yao, Y.3
  • 17
    • 84896502634 scopus 로고    scopus 로고
    • Semi-supervised mixture discriminant monitoring for chemical batch processes
    • Yan Z., Huang C.-C., Yao Y. Semi-supervised mixture discriminant monitoring for chemical batch processes. Chemom. Intell. Lab. Syst. 2014, 134:10-22.
    • (2014) Chemom. Intell. Lab. Syst. , vol.134 , pp. 10-22
    • Yan, Z.1    Huang, C.-C.2    Yao, Y.3
  • 18
    • 84903315318 scopus 로고    scopus 로고
    • Sensitivity enhancing transformations for monitoring the process correlation structure
    • Rato T.J., Reis M.S. Sensitivity enhancing transformations for monitoring the process correlation structure. J. Process Control 2014, 24:905-915.
    • (2014) J. Process Control , vol.24 , pp. 905-915
    • Rato, T.J.1    Reis, M.S.2
  • 21
    • 84879307272 scopus 로고    scopus 로고
    • A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
    • Yu J., Rashid M.M. A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis. AICHE J. 2013, 59:2348-2365.
    • (2013) AICHE J. , vol.59 , pp. 2348-2365
    • Yu, J.1    Rashid, M.M.2
  • 22
    • 84940194751 scopus 로고    scopus 로고
    • On-line process monitoring using local measures of association. Part II: design issues and fault diagnosis
    • Rato T.J., Reis M.S. On-line process monitoring using local measures of association. Part II: design issues and fault diagnosis. Chemom. Intell. Lab. Syst. 2015, 142:265-275.
    • (2015) Chemom. Intell. Lab. Syst. , vol.142 , pp. 265-275
    • Rato, T.J.1    Reis, M.S.2
  • 23
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using causal map and multivariate statistics: fault detection and identification
    • Chiang L.H., Braatz R.D. Process monitoring using causal map and multivariate statistics: fault detection and identification. Chemom. Intell. Lab. Syst. 2003, 65:159-178.
    • (2003) Chemom. Intell. Lab. Syst. , vol.65 , pp. 159-178
    • Chiang, L.H.1    Braatz, R.D.2
  • 24
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B Methodol. , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 74049132241 scopus 로고    scopus 로고
    • Multivariate statistical process control using LASSO
    • Zou C., Qiu P. Multivariate statistical process control using LASSO. J. Am. Stat. Assoc. 2009, 104:1586-1596.
    • (2009) J. Am. Stat. Assoc. , vol.104 , pp. 1586-1596
    • Zou, C.1    Qiu, P.2
  • 26
    • 84877660094 scopus 로고    scopus 로고
    • Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes
    • Chiu C.-C., Yao Y. Multiway elastic net (MEN) for final product quality prediction and quality-related analysis of batch processes. Chemom. Intell. Lab. Syst. 2013, 125:153-165.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 153-165
    • Chiu, C.-C.1    Yao, Y.2
  • 27
    • 84903766033 scopus 로고    scopus 로고
    • Regularization-based statistical batch process modeling for final product quality prediction
    • Yan Z., Chiu C.-C., Yao Y., Doing W. Regularization-based statistical batch process modeling for final product quality prediction. AICHE J. 2014, 60:2815-2827.
    • (2014) AICHE J. , vol.60 , pp. 2815-2827
    • Yan, Z.1    Chiu, C.-C.2    Yao, Y.3    Doing, W.4
  • 28
    • 84879017227 scopus 로고    scopus 로고
    • Penalized reconstruction-based multivariate contribution analysis for fault isolation
    • He B., Zhang J., Chen T., Yang X. Penalized reconstruction-based multivariate contribution analysis for fault isolation. Ind. Eng. Chem. Res. 2013, 52:7784-7794.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 7784-7794
    • He, B.1    Zhang, J.2    Chen, T.3    Yang, X.4
  • 30
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson J., Mudholkar G. Control procedures for residuals associated with principal component analysis. Technometrics 1979, 341-349.
    • (1979) Technometrics
    • Jackson, J.1    Mudholkar, G.2
  • 31
    • 68249091064 scopus 로고    scopus 로고
    • High-dimensional process monitoring and fault isolation via variable selection
    • Wang K., Jiang W. High-dimensional process monitoring and fault isolation via variable selection. J. Qual. Technol. 2009, 41:247.
    • (2009) J. Qual. Technol. , vol.41 , pp. 247
    • Wang, K.1    Jiang, W.2
  • 32
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • Zou H., Hastie T., Tibshirani R. On the "degrees of freedom" of the lasso. Ann. Stat. 2007, 35:2173-2192.
    • (2007) Ann. Stat. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 33
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J., Vogel E. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.1    Vogel, E.2
  • 34
    • 9744237208 scopus 로고    scopus 로고
    • Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS
    • Lee G., Han C., Yoon E.S. Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS. Ind. Eng. Chem. Res. 2004, 43:8037-8048.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 8037-8048
    • Lee, G.1    Han, C.2    Yoon, E.S.3
  • 35
    • 84894088611 scopus 로고    scopus 로고
    • Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring
    • Zhao C., Gao F. Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring. Chemom. Intell. Lab. Syst. 2014, 133:1-16.
    • (2014) Chemom. Intell. Lab. Syst. , vol.133 , pp. 1-16
    • Zhao, C.1    Gao, F.2
  • 37
    • 84924733661 scopus 로고    scopus 로고
    • Diagnosis of multiple and unknown faults using the causal map and multivariate statistics
    • Chiang L.H., Jiang B., Zhu X., Huang D., Braatz R.D. Diagnosis of multiple and unknown faults using the causal map and multivariate statistics. J. Process Control 2015, 28:27-39.
    • (2015) J. Process Control , vol.28 , pp. 27-39
    • Chiang, L.H.1    Jiang, B.2    Zhu, X.3    Huang, D.4    Braatz, R.D.5
  • 38
    • 84877316529 scopus 로고    scopus 로고
    • Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
    • Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst. 2013, 125:101-108.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 101-108
    • Rato, T.J.1    Reis, M.S.2
  • 39
    • 0034661131 scopus 로고    scopus 로고
    • Comparison of statistical process monitoring methods: application to the Eastman challenge problem
    • Kano M., Nagao K., Hasebe S., Hashimoto I., Ohno H., Strauss R., Bakshi B. Comparison of statistical process monitoring methods: application to the Eastman challenge problem. Comput. Chem. Eng. 2000, 24:175-181.
    • (2000) Comput. Chem. Eng. , vol.24 , pp. 175-181
    • Kano, M.1    Nagao, K.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.7
  • 40
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin S., Ding S.X., Haghani A., Hao H., Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 2012, 22:1567-1581.
    • (2012) J. Process Control , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 41
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker L. Decentralized control of the Tennessee Eastman challenge process. J. Process Control 1996, 6:205-221.
    • (1996) J. Process Control , vol.6 , pp. 205-221
    • Ricker, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.