-
1
-
-
84957069904
-
Review of soft sensor methods for regression applications
-
Souza, F. A. A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression applications Chemom. Intell. Lab. Syst. 2016, 152, 69-79 10.1016/j.chemolab.2015.12.011
-
(2016)
Chemom. Intell. Lab. Syst.
, vol.152
, pp. 69-79
-
-
Souza, F.A.A.1
Araújo, R.2
Mendes, J.3
-
2
-
-
67650023032
-
Data-Driven Soft Sensor Design with Multiple-Rate Sampled Data: A Comparative Study
-
Lin, B.; Recke, B.; Schmidt, T. M.; Knudsen, J. K. H.; Jørgensen, S. B. Data-Driven Soft Sensor Design with Multiple-Rate Sampled Data: A Comparative Study Ind. Eng. Chem. Res. 2009, 48 (11) 5379-5387 10.1021/ie801084e
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, Issue.11
, pp. 5379-5387
-
-
Lin, B.1
Recke, B.2
Schmidt, T.M.3
Knudsen, J.K.H.4
Jørgensen, S.B.5
-
3
-
-
84942162954
-
Challenges in the Specification and Integration of Measurement Uncertainty in the Development of Data-Driven Models for the Chemical Processing Industry
-
Reis, M. S.; Rendall, R.; Chin, S.-T.; Chiang, L. Challenges in the Specification and Integration of Measurement Uncertainty in the Development of Data-Driven Models for the Chemical Processing Industry Ind. Eng. Chem. Res. 2015, 54 (37) 9159-9177 10.1021/ie504577d
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, Issue.37
, pp. 9159-9177
-
-
Reis, M.S.1
Rendall, R.2
Chin, S.-T.3
Chiang, L.4
-
4
-
-
84924813762
-
Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach
-
Shang, C.; Huang, X.; Suykens, J. A. K.; Huang, D. Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach J. Process Control 2015, 28, 17-26 10.1016/j.jprocont.2015.02.006
-
(2015)
J. Process Control
, vol.28
, pp. 17-26
-
-
Shang, C.1
Huang, X.2
Suykens, J.A.K.3
Huang, D.4
-
5
-
-
67349089877
-
Data-driven Soft Sensors in the process industry
-
Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven Soft Sensors in the process industry Comput. Chem. Eng. 2009, 33 (4) 795-814 10.1016/j.compchemeng.2008.12.012
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
6
-
-
78649468188
-
Review of adaptation mechanisms for data-driven soft sensors
-
Kadlec, P.; Grbić, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2011, 35 (1) 1-24 10.1016/j.compchemeng.2010.07.034
-
(2011)
Comput. Chem. Eng.
, vol.35
, Issue.1
, pp. 1-24
-
-
Kadlec, P.1
Grbić, R.2
Gabrys, B.3
-
7
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation-based just-in-time modeling AIChE J. 2009, 55 (7) 1754-1765 10.1002/aic.11791
-
(2009)
AIChE J.
, vol.55
, Issue.7
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
Takinami, A.4
-
9
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Joe Qin, S. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22 (4) 503-514 10.1016/S0098-1354(97)00262-7
-
(1998)
Comput. Chem. Eng.
, vol.22
, Issue.4
, pp. 503-514
-
-
Joe Qin, S.1
-
10
-
-
60649090799
-
Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
-
Facco, P.; Doplicher, F.; Bezzo, F.; Barolo, M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process J. Process Control 2009, 19 (3) 520-529 10.1016/j.jprocont.2008.05.002
-
(2009)
J. Process Control
, vol.19
, Issue.3
, pp. 520-529
-
-
Facco, P.1
Doplicher, F.2
Bezzo, F.3
Barolo, M.4
-
11
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
Kaneko, H.; Arakawa, M.; Funatsu, K. Development of a new soft sensor method using independent component analysis and partial least squares AIChE J. 2009, 55 (1) 87-98 10.1002/aic.11648
-
(2009)
AIChE J.
, vol.55
, Issue.1
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
12
-
-
84894261826
-
Data-driven soft sensor development based on deep learning technique
-
Shang, C.; Yang, F.; Huang, D.; Lyu, W. Data-driven soft sensor development based on deep learning technique J. Process Control 2014, 24 (3) 223-233 10.1016/j.jprocont.2014.01.012
-
(2014)
J. Process Control
, vol.24
, Issue.3
, pp. 223-233
-
-
Shang, C.1
Yang, F.2
Huang, D.3
Lyu, W.4
-
15
-
-
71549120384
-
The boosting: A new idea of building models
-
Cao, D.-S.; Xu, Q.-S.; Liang, Y.-Z.; Zhang, L.-X.; Li, H.-D. The boosting: A new idea of building models Chemom. Intell. Lab. Syst. 2010, 100 (1) 1-11 10.1016/j.chemolab.2009.09.002
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.100
, Issue.1
, pp. 1-11
-
-
Cao, D.-S.1
Xu, Q.-S.2
Liang, Y.-Z.3
Zhang, L.-X.4
Li, H.-D.5
-
16
-
-
84883339723
-
A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds
-
Smusz, S.; Kurczab, R.; Bojarski, A. J. A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds Chemom. Intell. Lab. Syst. 2013, 128, 89-100 10.1016/j.chemolab.2013.08.003
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.128
, pp. 89-100
-
-
Smusz, S.1
Kurczab, R.2
Bojarski, A.J.3
-
17
-
-
84893804692
-
Multivariate video analysis and Gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions
-
Chen, J.; Yu, J.; Zhang, Y. Multivariate video analysis and Gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions Comput. Chem. Eng. 2014, 64, 13-23 10.1016/j.compchemeng.2014.01.010
-
(2014)
Comput. Chem. Eng.
, vol.64
, pp. 13-23
-
-
Chen, J.1
Yu, J.2
Zhang, Y.3
-
18
-
-
84929378604
-
Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions
-
Liu, Y.; Chen, T.; Chen, J. Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions Ind. Eng. Chem. Res. 2015, 54 (18) 5037-5047 10.1021/ie504185j
-
(2015)
Ind. Eng. Chem. Res.
, vol.54
, Issue.18
, pp. 5037-5047
-
-
Liu, Y.1
Chen, T.2
Chen, J.3
-
19
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28 (8) 1489-1498 10.1016/j.compchemeng.2003.11.004
-
(2004)
Comput. Chem. Eng.
, vol.28
, Issue.8
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
20
-
-
27444433806
-
Soft-sensor development for fed-batch bioreactors using support vector regression
-
Desai, K.; Badhe, Y.; Tambe, S. S.; Kulkarni, B. D. Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 2006, 27 (3) 225-239 10.1016/j.bej.2005.08.002
-
(2006)
Biochem. Eng. J.
, vol.27
, Issue.3
, pp. 225-239
-
-
Desai, K.1
Badhe, Y.2
Tambe, S.S.3
Kulkarni, B.D.4
-
21
-
-
0033874839
-
Inferential control system of distillation compositions using dynamic partial least squares regression
-
Kano, M.; Miyazaki, K.; Hasebe, S.; Hashimoto, I. Inferential control system of distillation compositions using dynamic partial least squares regression J. Process Control 2000, 10 (2-3) 157-166 10.1016/S0959-1524(99)00027-X
-
(2000)
J. Process Control
, vol.10
, Issue.23
, pp. 157-166
-
-
Kano, M.1
Miyazaki, K.2
Hasebe, S.3
Hashimoto, I.4
-
22
-
-
84926259783
-
Soft sensor for real-time cement fineness estimation
-
Stanišić, D.; Jorgovanović, N.; Popov, N.; Čongradac, V. Soft sensor for real-time cement fineness estimation ISA Trans. 2015, 55, 250-259 10.1016/j.isatra.2014.09.019
-
(2015)
ISA Trans.
, vol.55
, pp. 250-259
-
-
Stanišić, D.1
Jorgovanović, N.2
Popov, N.3
Čongradac, V.4
-
23
-
-
67349256117
-
Soft sensor for and using dynamic neural networks
-
Shakil, M.; Elshafei, M.; Habib, M. A.; Maleki, F. A. Soft sensor for and using dynamic neural networks Computers & Electrical Engineering 2009, 35 (4) 578-586 10.1016/j.compeleceng.2008.08.007
-
(2009)
Computers & Electrical Engineering
, vol.35
, Issue.4
, pp. 578-586
-
-
Shakil, M.1
Elshafei, M.2
Habib, M.A.3
Maleki, F.A.4
-
24
-
-
35548956430
-
Principal component analysis for data containing outliers and missing elements
-
Serneels, S.; Verdonck, T. Principal component analysis for data containing outliers and missing elements Comput. Stat. Data An. 2008, 52 (3) 1712-1727 10.1016/j.csda.2007.05.024
-
(2008)
Comput. Stat. Data An.
, vol.52
, Issue.3
, pp. 1712-1727
-
-
Serneels, S.1
Verdonck, T.2
-
25
-
-
0003288488
-
Neural networks for intelligent sensors and control - Practical issues and some solutions
-
Qin, S. J. Neural networks for intelligent sensors and control-Practical issues and some solutions Neural Systems for Control 1997, 213-234 10.1016/B978-012526430-3/50009-X
-
(1997)
Neural Systems for Control
, pp. 213-234
-
-
Qin, S.J.1
-
26
-
-
33947303537
-
Dealing with missing values and outliers in principal component analysis
-
Stanimirova, I.; Daszykowski, M.; Walczak, B. Dealing with missing values and outliers in principal component analysis Talanta 2007, 72 (1) 172-178 10.1016/j.talanta.2006.10.011
-
(2007)
Talanta
, vol.72
, Issue.1
, pp. 172-178
-
-
Stanimirova, I.1
Daszykowski, M.2
Walczak, B.3
-
27
-
-
0028946808
-
Robust principal components regression as a detection tool for outliers
-
Walczak, B.; Massart, D. L. Robust principal components regression as a detection tool for outliers Chemom. Intell. Lab. Syst. 1995, 27 (1) 41-54 10.1016/0169-7439(95)80006-U
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.27
, Issue.1
, pp. 41-54
-
-
Walczak, B.1
Massart, D.L.2
-
28
-
-
0035965017
-
Dealing with missing data: Part i
-
Walczak, B.; Massart, D. L. Dealing with missing data: Part I Chemom. Intell. Lab. Syst. 2001, 58 (1) 15-27 10.1016/S0169-7439(01)00131-9
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.58
, Issue.1
, pp. 15-27
-
-
Walczak, B.1
Massart, D.L.2
-
29
-
-
0035965042
-
Dealing with missing data: Part II
-
Walczak, B.; Massart, D. L. Dealing with missing data: Part II Chemom. Intell. Lab. Syst. 2001, 58 (1) 29-42 10.1016/S0169-7439(01)00132-0
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.58
, Issue.1
, pp. 29-42
-
-
Walczak, B.1
Massart, D.L.2
-
31
-
-
84885852240
-
FIR model identification of multirate processes with random delays using em algorithm
-
Xie, L.; Yang, H.; Huang, B. FIR model identification of multirate processes with random delays using EM algorithm AIChE J. 2013, 59 (11) 4124-4132 10.1002/aic.14147
-
(2013)
AIChE J.
, vol.59
, Issue.11
, pp. 4124-4132
-
-
Xie, L.1
Yang, H.2
Huang, B.3
-
32
-
-
1642313098
-
Multirate dynamic inferential modeling for multivariable processes
-
Lu, N.; Yang, Y.; Gao, F.; Wang, F. Multirate dynamic inferential modeling for multivariable processes Chem. Eng. Sci. 2004, 59 (4) 855-864 10.1016/j.ces.2003.12.003
-
(2004)
Chem. Eng. Sci.
, vol.59
, Issue.4
, pp. 855-864
-
-
Lu, N.1
Yang, Y.2
Gao, F.3
Wang, F.4
-
33
-
-
0141754117
-
Multirate sampled-data systems: Computing fast-rate models
-
Wang, J.; Chen, T.; Huang, B. Multirate sampled-data systems: computing fast-rate models J. Process Control 2004, 14 (1) 79-88 10.1016/S0959-1524(03)00033-7
-
(2004)
J. Process Control
, vol.14
, Issue.1
, pp. 79-88
-
-
Wang, J.1
Chen, T.2
Huang, B.3
-
34
-
-
0035837930
-
Identification of fast-rate models from multirate data
-
Li, D.; Shah, S. L.; Chen, T. Identification of fast-rate models from multirate data Int. J. Control 2001, 74 (7) 680-689 10.1080/00207170010018904
-
(2001)
Int. J. Control
, vol.74
, Issue.7
, pp. 680-689
-
-
Li, D.1
Shah, S.L.2
Chen, T.3
-
35
-
-
0037272088
-
Application of dual-rate modeling to CCR octane quality inferential control
-
Dongguang, L.; Shah, S. L.; Tongwen, C.; Qi, K. Z. Application of dual-rate modeling to CCR octane quality inferential control IEEE T. Contr. Syst. T. 2003, 11 (1) 43-51 10.1109/TCST.2002.806433
-
(2003)
IEEE T. Contr. Syst. T.
, vol.11
, Issue.1
, pp. 43-51
-
-
Dongguang, L.1
Shah, S.L.2
Tongwen, C.3
Qi, K.Z.4
-
36
-
-
78149281663
-
A novel calibration approach of soft sensor based on multirate data fusion technology
-
Wu, Y.; Luo, X. A novel calibration approach of soft sensor based on multirate data fusion technology J. Process Control 2010, 20 (10) 1252-1260 10.1016/j.jprocont.2010.09.003
-
(2010)
J. Process Control
, vol.20
, Issue.10
, pp. 1252-1260
-
-
Wu, Y.1
Luo, X.2
-
37
-
-
38849143805
-
Multiscale theory for linear dynamic processes: Part 2. Multiscale model predictive control (MS-MPC)
-
Stephanopoulos, G.; Karsligil, O.; Dyer, M. Multiscale theory for linear dynamic processes: Part 2. Multiscale model predictive control (MS-MPC) Comput. Chem. Eng. 2008, 32 (4-5) 885-912 10.1016/j.compchemeng.2007.03.022
-
(2008)
Comput. Chem. Eng.
, vol.32
, Issue.45
, pp. 885-912
-
-
Stephanopoulos, G.1
Karsligil, O.2
Dyer, M.3
-
38
-
-
38849163488
-
Multiscale theory for linear dynamic processes: Part 1. Foundations
-
Stephanopoulos, G.; Karsligil, O.; Dyer, M. S. Multiscale theory for linear dynamic processes: Part 1. Foundations Comput. Chem. Eng. 2008, 32 (4-5) 857-884 10.1016/j.compchemeng.2007.03.021
-
(2008)
Comput. Chem. Eng.
, vol.32
, Issue.45
, pp. 857-884
-
-
Stephanopoulos, G.1
Karsligil, O.2
Dyer, M.S.3
-
39
-
-
0026628467
-
Modeling and estimation of multiresolution stochastic processes
-
Basseville, M.; Benveniste, A.; Chou, K. C.; Golden, S. A.; Nikoukhah, R.; Willsky, A. S. Modeling and estimation of multiresolution stochastic processes IEEE Trans. Inf. Theory 1992, 38 (2) 766-784 10.1109/18.119735
-
(1992)
IEEE Trans. Inf. Theory
, vol.38
, Issue.2
, pp. 766-784
-
-
Basseville, M.1
Benveniste, A.2
Chou, K.C.3
Golden, S.A.4
Nikoukhah, R.5
Willsky, A.S.6
-
40
-
-
0028400404
-
Multiscale systems, Kalman filters, and Riccati equations
-
Chou, K.; Willsky, A. S.; Nikoukhah, R. Multiscale systems, Kalman filters, and Riccati equations IEEE Trans. Autom. Control 1994, 39 (3) 479 10.1109/9.280747
-
(1994)
IEEE Trans. Autom. Control
, vol.39
, Issue.3
, pp. 479
-
-
Chou, K.1
Willsky, A.S.2
Nikoukhah, R.3
-
41
-
-
0345421566
-
Multiresolution Markov models for signal and image processing
-
Willsky, A. S. Multiresolution Markov models for signal and image processing Proc. IEEE 2002, 90 (8) 1396-1458 10.1109/JPROC.2002.800717
-
(2002)
Proc. IEEE
, vol.90
, Issue.8
, pp. 1396-1458
-
-
Willsky, A.S.1
-
42
-
-
0024700097
-
A theory for multiresolution signal decomposition: The wavelet representation
-
Mallat, S. G. A theory for multiresolution signal decomposition: the wavelet representation IEEE Transactions on Pattern Analysis and Machine Intelligence 1989, 11 (7) 674-693 10.1109/34.192463
-
(1989)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.11
, Issue.7
, pp. 674-693
-
-
Mallat, S.G.1
-
48
-
-
84946280337
-
On the Structure of Partial Least Squares Regression
-
Helland, I. S. On the Structure of Partial Least Squares Regression Commun. Statist.-Simula. 1988, 17 (2) 581 10.1080/03610918808812681
-
(1988)
Commun. Statist.-Simula.
, vol.17
, Issue.2
, pp. 581
-
-
Helland, I.S.1
-
49
-
-
85162676194
-
PLS Regression Methods
-
Höskuldsson, A. PLS Regression Methods J. Chemom. 1988, 2, 211-228 10.1002/cem.1180020306
-
(1988)
J. Chemom.
, vol.2
, pp. 211-228
-
-
Höskuldsson, A.1
-
51
-
-
0035965476
-
PLS-Regression: A Basic Tool of Chemometrics
-
Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics Chemom. Intell. Lab. Syst. 2001, 58, 109-130 10.1016/S0169-7439(01)00155-1
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.58
, pp. 109-130
-
-
Wold, S.1
Sjöström, M.2
Eriksson, L.3
-
52
-
-
11144325691
-
Partial Least-Squares Regression: A Tutorial
-
Geladi, P.; Kowalski, B. R. Partial Least-Squares Regression: a Tutorial Anal. Chim. Acta 1986, 185, 1-17 10.1016/0003-2670(86)80028-9
-
(1986)
Anal. Chim. Acta
, vol.185
, pp. 1-17
-
-
Geladi, P.1
Kowalski, B.R.2
-
54
-
-
84951601886
-
Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models
-
Wold, S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models Technometrics 1978, 20 (4) 397-405 10.1080/00401706.1978.10489693
-
(1978)
Technometrics
, vol.20
, Issue.4
, pp. 397-405
-
-
Wold, S.1
-
57
-
-
0033652276
-
Modeling of Dynamic Systems Using Latent Variable and Subspace Methods
-
Shi, R.; MacGregor, J. F. Modeling of Dynamic Systems Using Latent Variable and Subspace Methods J. Chemom. 2000, 14, 423-439 10.1002/1099-128X(200009/12)14:5/6<423::AID-CEM615>3.3.CO;2-2
-
(2000)
J. Chemom.
, vol.14
, pp. 423-439
-
-
Shi, R.1
Macgregor, J.F.2
-
58
-
-
56749173501
-
PLS: A versatile tool for industrial process improvement and optimization
-
Ferrer, A.; Aguado, D.; Vidal-Puig, S.; Prats, J. M.; Zarzo, M. PLS: A versatile tool for industrial process improvement and optimization Applied Stochastic Models in Business and Industry 2008, 24 (6) 551-567 10.1002/asmb.716
-
(2008)
Applied Stochastic Models in Business and Industry
, vol.24
, Issue.6
, pp. 551-567
-
-
Ferrer, A.1
Aguado, D.2
Vidal-Puig, S.3
Prats, J.M.4
Zarzo, M.5
-
60
-
-
33748869551
-
Generalized Multiresolution Decomposition Frameworks for the Analysis of Industrial Data with Uncertainty and Missing Values
-
Reis, M. S.; Saraiva, P. M. Generalized Multiresolution Decomposition Frameworks for the Analysis of Industrial Data with Uncertainty and Missing Values Ind. Eng. Chem. Res. 2006, 45 (18) 6330-6338 10.1021/ie051313b
-
(2006)
Ind. Eng. Chem. Res.
, vol.45
, Issue.18
, pp. 6330-6338
-
-
Reis, M.S.1
Saraiva, P.M.2
|