메뉴 건너뛰기




Volumn 56, Issue 13, 2017, Pages 3640-3654

Multiresolution Soft Sensors: A New Class of Model Structures for Handling Multiresolution Data

Author keywords

[No Author keywords available]

Indexed keywords

MODEL STRUCTURES;

EID: 85019603331     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/acs.iecr.6b04349     Document Type: Article
Times cited : (24)

References (60)
  • 1
    • 84957069904 scopus 로고    scopus 로고
    • Review of soft sensor methods for regression applications
    • Souza, F. A. A.; Araújo, R.; Mendes, J. Review of soft sensor methods for regression applications Chemom. Intell. Lab. Syst. 2016, 152, 69-79 10.1016/j.chemolab.2015.12.011
    • (2016) Chemom. Intell. Lab. Syst. , vol.152 , pp. 69-79
    • Souza, F.A.A.1    Araújo, R.2    Mendes, J.3
  • 2
    • 67650023032 scopus 로고    scopus 로고
    • Data-Driven Soft Sensor Design with Multiple-Rate Sampled Data: A Comparative Study
    • Lin, B.; Recke, B.; Schmidt, T. M.; Knudsen, J. K. H.; Jørgensen, S. B. Data-Driven Soft Sensor Design with Multiple-Rate Sampled Data: A Comparative Study Ind. Eng. Chem. Res. 2009, 48 (11) 5379-5387 10.1021/ie801084e
    • (2009) Ind. Eng. Chem. Res. , vol.48 , Issue.11 , pp. 5379-5387
    • Lin, B.1    Recke, B.2    Schmidt, T.M.3    Knudsen, J.K.H.4    Jørgensen, S.B.5
  • 3
    • 84942162954 scopus 로고    scopus 로고
    • Challenges in the Specification and Integration of Measurement Uncertainty in the Development of Data-Driven Models for the Chemical Processing Industry
    • Reis, M. S.; Rendall, R.; Chin, S.-T.; Chiang, L. Challenges in the Specification and Integration of Measurement Uncertainty in the Development of Data-Driven Models for the Chemical Processing Industry Ind. Eng. Chem. Res. 2015, 54 (37) 9159-9177 10.1021/ie504577d
    • (2015) Ind. Eng. Chem. Res. , vol.54 , Issue.37 , pp. 9159-9177
    • Reis, M.S.1    Rendall, R.2    Chin, S.-T.3    Chiang, L.4
  • 4
    • 84924813762 scopus 로고    scopus 로고
    • Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach
    • Shang, C.; Huang, X.; Suykens, J. A. K.; Huang, D. Enhancing dynamic soft sensors based on DPLS: A temporal smoothness regularization approach J. Process Control 2015, 28, 17-26 10.1016/j.jprocont.2015.02.006
    • (2015) J. Process Control , vol.28 , pp. 17-26
    • Shang, C.1    Huang, X.2    Suykens, J.A.K.3    Huang, D.4
  • 5
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven Soft Sensors in the process industry
    • Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven Soft Sensors in the process industry Comput. Chem. Eng. 2009, 33 (4) 795-814 10.1016/j.compchemeng.2008.12.012
    • (2009) Comput. Chem. Eng. , vol.33 , Issue.4 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 6
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • Kadlec, P.; Grbić, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors Comput. Chem. Eng. 2011, 35 (1) 1-24 10.1016/j.compchemeng.2010.07.034
    • (2011) Comput. Chem. Eng. , vol.35 , Issue.1 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 7
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara, K.; Kano, M.; Hasebe, S.; Takinami, A. Soft-sensor development using correlation-based just-in-time modeling AIChE J. 2009, 55 (7) 1754-1765 10.1002/aic.11791
    • (2009) AIChE J. , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3    Takinami, A.4
  • 9
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Joe Qin, S. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22 (4) 503-514 10.1016/S0098-1354(97)00262-7
    • (1998) Comput. Chem. Eng. , vol.22 , Issue.4 , pp. 503-514
    • Joe Qin, S.1
  • 10
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco, P.; Doplicher, F.; Bezzo, F.; Barolo, M. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process J. Process Control 2009, 19 (3) 520-529 10.1016/j.jprocont.2008.05.002
    • (2009) J. Process Control , vol.19 , Issue.3 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3    Barolo, M.4
  • 11
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko, H.; Arakawa, M.; Funatsu, K. Development of a new soft sensor method using independent component analysis and partial least squares AIChE J. 2009, 55 (1) 87-98 10.1002/aic.11648
    • (2009) AIChE J. , vol.55 , Issue.1 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 12
    • 84894261826 scopus 로고    scopus 로고
    • Data-driven soft sensor development based on deep learning technique
    • Shang, C.; Yang, F.; Huang, D.; Lyu, W. Data-driven soft sensor development based on deep learning technique J. Process Control 2014, 24 (3) 223-233 10.1016/j.jprocont.2014.01.012
    • (2014) J. Process Control , vol.24 , Issue.3 , pp. 223-233
    • Shang, C.1    Yang, F.2    Huang, D.3    Lyu, W.4
  • 16
    • 84883339723 scopus 로고    scopus 로고
    • A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds
    • Smusz, S.; Kurczab, R.; Bojarski, A. J. A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds Chemom. Intell. Lab. Syst. 2013, 128, 89-100 10.1016/j.chemolab.2013.08.003
    • (2013) Chemom. Intell. Lab. Syst. , vol.128 , pp. 89-100
    • Smusz, S.1    Kurczab, R.2    Bojarski, A.J.3
  • 17
    • 84893804692 scopus 로고    scopus 로고
    • Multivariate video analysis and Gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions
    • Chen, J.; Yu, J.; Zhang, Y. Multivariate video analysis and Gaussian process regression model based soft sensor for online estimation and prediction of nickel pellet size distributions Comput. Chem. Eng. 2014, 64, 13-23 10.1016/j.compchemeng.2014.01.010
    • (2014) Comput. Chem. Eng. , vol.64 , pp. 13-23
    • Chen, J.1    Yu, J.2    Zhang, Y.3
  • 18
    • 84929378604 scopus 로고    scopus 로고
    • Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions
    • Liu, Y.; Chen, T.; Chen, J. Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions Ind. Eng. Chem. Res. 2015, 54 (18) 5037-5047 10.1021/ie504185j
    • (2015) Ind. Eng. Chem. Res. , vol.54 , Issue.18 , pp. 5037-5047
    • Liu, Y.1    Chen, T.2    Chen, J.3
  • 19
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 2004, 28 (8) 1489-1498 10.1016/j.compchemeng.2003.11.004
    • (2004) Comput. Chem. Eng. , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 20
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • Desai, K.; Badhe, Y.; Tambe, S. S.; Kulkarni, B. D. Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 2006, 27 (3) 225-239 10.1016/j.bej.2005.08.002
    • (2006) Biochem. Eng. J. , vol.27 , Issue.3 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 21
    • 0033874839 scopus 로고    scopus 로고
    • Inferential control system of distillation compositions using dynamic partial least squares regression
    • Kano, M.; Miyazaki, K.; Hasebe, S.; Hashimoto, I. Inferential control system of distillation compositions using dynamic partial least squares regression J. Process Control 2000, 10 (2-3) 157-166 10.1016/S0959-1524(99)00027-X
    • (2000) J. Process Control , vol.10 , Issue.23 , pp. 157-166
    • Kano, M.1    Miyazaki, K.2    Hasebe, S.3    Hashimoto, I.4
  • 22
    • 84926259783 scopus 로고    scopus 로고
    • Soft sensor for real-time cement fineness estimation
    • Stanišić, D.; Jorgovanović, N.; Popov, N.; Čongradac, V. Soft sensor for real-time cement fineness estimation ISA Trans. 2015, 55, 250-259 10.1016/j.isatra.2014.09.019
    • (2015) ISA Trans. , vol.55 , pp. 250-259
    • Stanišić, D.1    Jorgovanović, N.2    Popov, N.3    Čongradac, V.4
  • 24
    • 35548956430 scopus 로고    scopus 로고
    • Principal component analysis for data containing outliers and missing elements
    • Serneels, S.; Verdonck, T. Principal component analysis for data containing outliers and missing elements Comput. Stat. Data An. 2008, 52 (3) 1712-1727 10.1016/j.csda.2007.05.024
    • (2008) Comput. Stat. Data An. , vol.52 , Issue.3 , pp. 1712-1727
    • Serneels, S.1    Verdonck, T.2
  • 25
    • 0003288488 scopus 로고    scopus 로고
    • Neural networks for intelligent sensors and control - Practical issues and some solutions
    • Qin, S. J. Neural networks for intelligent sensors and control-Practical issues and some solutions Neural Systems for Control 1997, 213-234 10.1016/B978-012526430-3/50009-X
    • (1997) Neural Systems for Control , pp. 213-234
    • Qin, S.J.1
  • 26
    • 33947303537 scopus 로고    scopus 로고
    • Dealing with missing values and outliers in principal component analysis
    • Stanimirova, I.; Daszykowski, M.; Walczak, B. Dealing with missing values and outliers in principal component analysis Talanta 2007, 72 (1) 172-178 10.1016/j.talanta.2006.10.011
    • (2007) Talanta , vol.72 , Issue.1 , pp. 172-178
    • Stanimirova, I.1    Daszykowski, M.2    Walczak, B.3
  • 27
    • 0028946808 scopus 로고
    • Robust principal components regression as a detection tool for outliers
    • Walczak, B.; Massart, D. L. Robust principal components regression as a detection tool for outliers Chemom. Intell. Lab. Syst. 1995, 27 (1) 41-54 10.1016/0169-7439(95)80006-U
    • (1995) Chemom. Intell. Lab. Syst. , vol.27 , Issue.1 , pp. 41-54
    • Walczak, B.1    Massart, D.L.2
  • 28
    • 0035965017 scopus 로고    scopus 로고
    • Dealing with missing data: Part i
    • Walczak, B.; Massart, D. L. Dealing with missing data: Part I Chemom. Intell. Lab. Syst. 2001, 58 (1) 15-27 10.1016/S0169-7439(01)00131-9
    • (2001) Chemom. Intell. Lab. Syst. , vol.58 , Issue.1 , pp. 15-27
    • Walczak, B.1    Massart, D.L.2
  • 29
    • 0035965042 scopus 로고    scopus 로고
    • Dealing with missing data: Part II
    • Walczak, B.; Massart, D. L. Dealing with missing data: Part II Chemom. Intell. Lab. Syst. 2001, 58 (1) 29-42 10.1016/S0169-7439(01)00132-0
    • (2001) Chemom. Intell. Lab. Syst. , vol.58 , Issue.1 , pp. 29-42
    • Walczak, B.1    Massart, D.L.2
  • 31
    • 84885852240 scopus 로고    scopus 로고
    • FIR model identification of multirate processes with random delays using em algorithm
    • Xie, L.; Yang, H.; Huang, B. FIR model identification of multirate processes with random delays using EM algorithm AIChE J. 2013, 59 (11) 4124-4132 10.1002/aic.14147
    • (2013) AIChE J. , vol.59 , Issue.11 , pp. 4124-4132
    • Xie, L.1    Yang, H.2    Huang, B.3
  • 32
    • 1642313098 scopus 로고    scopus 로고
    • Multirate dynamic inferential modeling for multivariable processes
    • Lu, N.; Yang, Y.; Gao, F.; Wang, F. Multirate dynamic inferential modeling for multivariable processes Chem. Eng. Sci. 2004, 59 (4) 855-864 10.1016/j.ces.2003.12.003
    • (2004) Chem. Eng. Sci. , vol.59 , Issue.4 , pp. 855-864
    • Lu, N.1    Yang, Y.2    Gao, F.3    Wang, F.4
  • 33
    • 0141754117 scopus 로고    scopus 로고
    • Multirate sampled-data systems: Computing fast-rate models
    • Wang, J.; Chen, T.; Huang, B. Multirate sampled-data systems: computing fast-rate models J. Process Control 2004, 14 (1) 79-88 10.1016/S0959-1524(03)00033-7
    • (2004) J. Process Control , vol.14 , Issue.1 , pp. 79-88
    • Wang, J.1    Chen, T.2    Huang, B.3
  • 34
    • 0035837930 scopus 로고    scopus 로고
    • Identification of fast-rate models from multirate data
    • Li, D.; Shah, S. L.; Chen, T. Identification of fast-rate models from multirate data Int. J. Control 2001, 74 (7) 680-689 10.1080/00207170010018904
    • (2001) Int. J. Control , vol.74 , Issue.7 , pp. 680-689
    • Li, D.1    Shah, S.L.2    Chen, T.3
  • 35
    • 0037272088 scopus 로고    scopus 로고
    • Application of dual-rate modeling to CCR octane quality inferential control
    • Dongguang, L.; Shah, S. L.; Tongwen, C.; Qi, K. Z. Application of dual-rate modeling to CCR octane quality inferential control IEEE T. Contr. Syst. T. 2003, 11 (1) 43-51 10.1109/TCST.2002.806433
    • (2003) IEEE T. Contr. Syst. T. , vol.11 , Issue.1 , pp. 43-51
    • Dongguang, L.1    Shah, S.L.2    Tongwen, C.3    Qi, K.Z.4
  • 36
    • 78149281663 scopus 로고    scopus 로고
    • A novel calibration approach of soft sensor based on multirate data fusion technology
    • Wu, Y.; Luo, X. A novel calibration approach of soft sensor based on multirate data fusion technology J. Process Control 2010, 20 (10) 1252-1260 10.1016/j.jprocont.2010.09.003
    • (2010) J. Process Control , vol.20 , Issue.10 , pp. 1252-1260
    • Wu, Y.1    Luo, X.2
  • 37
    • 38849143805 scopus 로고    scopus 로고
    • Multiscale theory for linear dynamic processes: Part 2. Multiscale model predictive control (MS-MPC)
    • Stephanopoulos, G.; Karsligil, O.; Dyer, M. Multiscale theory for linear dynamic processes: Part 2. Multiscale model predictive control (MS-MPC) Comput. Chem. Eng. 2008, 32 (4-5) 885-912 10.1016/j.compchemeng.2007.03.022
    • (2008) Comput. Chem. Eng. , vol.32 , Issue.45 , pp. 885-912
    • Stephanopoulos, G.1    Karsligil, O.2    Dyer, M.3
  • 38
    • 38849163488 scopus 로고    scopus 로고
    • Multiscale theory for linear dynamic processes: Part 1. Foundations
    • Stephanopoulos, G.; Karsligil, O.; Dyer, M. S. Multiscale theory for linear dynamic processes: Part 1. Foundations Comput. Chem. Eng. 2008, 32 (4-5) 857-884 10.1016/j.compchemeng.2007.03.021
    • (2008) Comput. Chem. Eng. , vol.32 , Issue.45 , pp. 857-884
    • Stephanopoulos, G.1    Karsligil, O.2    Dyer, M.S.3
  • 40
    • 0028400404 scopus 로고
    • Multiscale systems, Kalman filters, and Riccati equations
    • Chou, K.; Willsky, A. S.; Nikoukhah, R. Multiscale systems, Kalman filters, and Riccati equations IEEE Trans. Autom. Control 1994, 39 (3) 479 10.1109/9.280747
    • (1994) IEEE Trans. Autom. Control , vol.39 , Issue.3 , pp. 479
    • Chou, K.1    Willsky, A.S.2    Nikoukhah, R.3
  • 41
    • 0345421566 scopus 로고    scopus 로고
    • Multiresolution Markov models for signal and image processing
    • Willsky, A. S. Multiresolution Markov models for signal and image processing Proc. IEEE 2002, 90 (8) 1396-1458 10.1109/JPROC.2002.800717
    • (2002) Proc. IEEE , vol.90 , Issue.8 , pp. 1396-1458
    • Willsky, A.S.1
  • 42
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat, S. G. A theory for multiresolution signal decomposition: the wavelet representation IEEE Transactions on Pattern Analysis and Machine Intelligence 1989, 11 (7) 674-693 10.1109/34.192463
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 48
    • 84946280337 scopus 로고
    • On the Structure of Partial Least Squares Regression
    • Helland, I. S. On the Structure of Partial Least Squares Regression Commun. Statist.-Simula. 1988, 17 (2) 581 10.1080/03610918808812681
    • (1988) Commun. Statist.-Simula. , vol.17 , Issue.2 , pp. 581
    • Helland, I.S.1
  • 49
    • 85162676194 scopus 로고
    • PLS Regression Methods
    • Höskuldsson, A. PLS Regression Methods J. Chemom. 1988, 2, 211-228 10.1002/cem.1180020306
    • (1988) J. Chemom. , vol.2 , pp. 211-228
    • Höskuldsson, A.1
  • 51
    • 0035965476 scopus 로고    scopus 로고
    • PLS-Regression: A Basic Tool of Chemometrics
    • Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics Chemom. Intell. Lab. Syst. 2001, 58, 109-130 10.1016/S0169-7439(01)00155-1
    • (2001) Chemom. Intell. Lab. Syst. , vol.58 , pp. 109-130
    • Wold, S.1    Sjöström, M.2    Eriksson, L.3
  • 52
    • 11144325691 scopus 로고
    • Partial Least-Squares Regression: A Tutorial
    • Geladi, P.; Kowalski, B. R. Partial Least-Squares Regression: a Tutorial Anal. Chim. Acta 1986, 185, 1-17 10.1016/0003-2670(86)80028-9
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 54
    • 84951601886 scopus 로고
    • Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models
    • Wold, S. Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models Technometrics 1978, 20 (4) 397-405 10.1080/00401706.1978.10489693
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-405
    • Wold, S.1
  • 57
    • 0033652276 scopus 로고    scopus 로고
    • Modeling of Dynamic Systems Using Latent Variable and Subspace Methods
    • Shi, R.; MacGregor, J. F. Modeling of Dynamic Systems Using Latent Variable and Subspace Methods J. Chemom. 2000, 14, 423-439 10.1002/1099-128X(200009/12)14:5/6<423::AID-CEM615>3.3.CO;2-2
    • (2000) J. Chemom. , vol.14 , pp. 423-439
    • Shi, R.1    Macgregor, J.F.2
  • 60
    • 33748869551 scopus 로고    scopus 로고
    • Generalized Multiresolution Decomposition Frameworks for the Analysis of Industrial Data with Uncertainty and Missing Values
    • Reis, M. S.; Saraiva, P. M. Generalized Multiresolution Decomposition Frameworks for the Analysis of Industrial Data with Uncertainty and Missing Values Ind. Eng. Chem. Res. 2006, 45 (18) 6330-6338 10.1021/ie051313b
    • (2006) Ind. Eng. Chem. Res. , vol.45 , Issue.18 , pp. 6330-6338
    • Reis, M.S.1    Saraiva, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.