-
1
-
-
77956444702
-
The state of the art in chemical process control in Japan: Good practice and questionnaire survey
-
M. Kano, and M. Ogawa The state of the art in chemical process control in Japan: good practice and questionnaire survey J. Process Control 20 9 2010 969 982
-
(2010)
J. Process Control
, vol.20
, Issue.9
, pp. 969-982
-
-
Kano, M.1
Ogawa, M.2
-
2
-
-
79954540625
-
Robust processes through latent variable modeling and optimization
-
F. Yacoub, and J.F. MacGregor Robust processes through latent variable modeling and optimization AIChE J. 57 5 2011 1278 1287
-
(2011)
AIChE J.
, vol.57
, Issue.5
, pp. 1278-1287
-
-
Yacoub, F.1
Macgregor, J.F.2
-
3
-
-
84890854491
-
Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach
-
J. Mori, and J. Yu Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach J. Process Control 24 1 2014 57 71
-
(2014)
J. Process Control
, vol.24
, Issue.1
, pp. 57-71
-
-
Mori, J.1
Yu, J.2
-
4
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
P. Kadlec, B. Gabrys, and S. Strandt Data-driven soft sensors in the process industry Comput. Chem. Eng. 33 4 2009 795 814
-
(2009)
Comput. Chem. Eng.
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
5
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
S. Joe Qin Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 22 4 1998 503 514
-
(1998)
Comput. Chem. Eng.
, vol.22
, Issue.4
, pp. 503-514
-
-
Joe Qin, S.1
-
6
-
-
60649090799
-
Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
-
P. Facco, F. Doplicher, F. Bezzo, and M. Barolo Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process J. Process Control 19 3 2009 520 529
-
(2009)
J. Process Control
, vol.19
, Issue.3
, pp. 520-529
-
-
Facco, P.1
Doplicher, F.2
Bezzo, F.3
Barolo, M.4
-
7
-
-
58449118276
-
Development of a new soft sensor method using independent component analysis and partial least squares
-
H. Kaneko, M. Arakawa, and K. Funatsu Development of a new soft sensor method using independent component analysis and partial least squares AIChE J. 55 1 2009 87 98
-
(2009)
AIChE J.
, vol.55
, Issue.1
, pp. 87-98
-
-
Kaneko, H.1
Arakawa, M.2
Funatsu, K.3
-
8
-
-
0003288488
-
Neural networks for intelligent sensors and control
-
S. Joe Qin Neural networks for intelligent sensors and control Neural Syst. Control 1997 213
-
(1997)
Neural Syst. Control
, pp. 213
-
-
Joe Qin, S.1
-
9
-
-
84894261826
-
Data-driven soft sensor development based on deep learning technique
-
C. Shang, F. Yang, D. Huang, and W. Lyu Data-driven soft sensor development based on deep learning technique J. Process Control 24 3 2014 223 233
-
(2014)
J. Process Control
, vol.24
, Issue.3
, pp. 223-233
-
-
Shang, C.1
Yang, F.2
Huang, D.3
Lyu, W.4
-
10
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
W. Yan, H. Shao, and X. Wang Soft sensing modeling based on support vector machine and Bayesian model selection Comput. Chem. Eng. 28 8 2004 1489 1498
-
(2004)
Comput. Chem. Eng.
, vol.28
, Issue.8
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
11
-
-
27444433806
-
Soft-sensor development for fed-batch bioreactors using support vector regression
-
K. Desai, Y. Badhe, S.S. Tambe, and B.D. Kulkarni Soft-sensor development for fed-batch bioreactors using support vector regression Biochem. Eng. J. 27 3 2006 225 239
-
(2006)
Biochem. Eng. J.
, vol.27
, Issue.3
, pp. 225-239
-
-
Desai, K.1
Badhe, Y.2
Tambe, S.S.3
Kulkarni, B.D.4
-
12
-
-
57249097849
-
Dealing with irregular data in soft sensors: Bayesian method and comparative study
-
S. Khatibisepehr, and B. Huang Dealing with irregular data in soft sensors: Bayesian method and comparative study Ind. Eng. Chem. Res. 47 22 2008 8713 8723
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, Issue.22
, pp. 8713-8723
-
-
Khatibisepehr, S.1
Huang, B.2
-
13
-
-
0033874839
-
Inferential control system of distillation compositions using dynamic partial least squares regression
-
M. Kano, K. Miyazaki, S. Hasebe, and I. Hashimoto Inferential control system of distillation compositions using dynamic partial least squares regression J. Process Control 10 2 2000 157 166
-
(2000)
J. Process Control
, vol.10
, Issue.2
, pp. 157-166
-
-
Kano, M.1
Miyazaki, K.2
Hasebe, S.3
Hashimoto, I.4
-
14
-
-
84875586422
-
Modeling of soft sensor for chemical process
-
P. Cao, and X. Luo Modeling of soft sensor for chemical process CIESC J. 3 2013 004
-
(2013)
CIESC J.
, vol.3
, pp. 004
-
-
Cao, P.1
Luo, X.2
-
15
-
-
0025010309
-
Use of neural nets for dynamic modeling and control of chemical process systems
-
N. Bhat, and T.J. McAvoy Use of neural nets for dynamic modeling and control of chemical process systems Comput. Chem. Eng. 14 4 1990 573 582
-
(1990)
Comput. Chem. Eng.
, vol.14
, Issue.4
, pp. 573-582
-
-
Bhat, N.1
McAvoy, T.J.2
-
16
-
-
84892975847
-
An iterative two-level optimization method for the modeling of Wiener structure nonlinear dynamic soft sensors
-
X. Gao, F. Yang, D. Huang, and Y. Ding An iterative two-level optimization method for the modeling of Wiener structure nonlinear dynamic soft sensors Ind. Eng. Chem. Res. 53 3 2014 1172 1178
-
(2014)
Ind. Eng. Chem. Res.
, vol.53
, Issue.3
, pp. 1172-1178
-
-
Gao, X.1
Yang, F.2
Huang, D.3
Ding, Y.4
-
17
-
-
84903308523
-
Modeling for soft sensor systems and parameters updating online
-
P. Cao, and X. Luo Modeling for soft sensor systems and parameters updating online J. Process Control 24 6 2014 975 990
-
(2014)
J. Process Control
, vol.24
, Issue.6
, pp. 975-990
-
-
Cao, P.1
Luo, X.2
-
18
-
-
24344446381
-
Discussion about dynamic soft-sensing modeling
-
Y. Ma, D. Huang, and Y. Jin Discussion about dynamic soft-sensing modeling J. Chem. Ind. Eng. 56 8 2005 1516
-
(2005)
J. Chem. Ind. Eng.
, vol.56
, Issue.8
, pp. 1516
-
-
Ma, Y.1
Huang, D.2
Jin, Y.3
-
19
-
-
78149281663
-
A novel calibration approach of soft sensor based on multirate data fusion technology
-
Y. Wu, and X. Luo A novel calibration approach of soft sensor based on multirate data fusion technology J. Process Control 20 10 2010 1252 1260
-
(2010)
J. Process Control
, vol.20
, Issue.10
, pp. 1252-1260
-
-
Wu, Y.1
Luo, X.2
-
20
-
-
84903307642
-
Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response
-
C. Shang, X. Gao, F. Yang, and D. Huang Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response IEEE Trans. Control Syst. Technol. 22 4 2014 1550 1557
-
(2014)
IEEE Trans. Control Syst. Technol.
, vol.22
, Issue.4
, pp. 1550-1557
-
-
Shang, C.1
Gao, X.2
Yang, F.3
Huang, D.4
-
21
-
-
33847162850
-
A systematic approach for soft sensor development
-
B. Lin, B. Recke, J.K. Knudsen, and S.B. Jørgensen A systematic approach for soft sensor development Comput. Chem. Eng. 31 5 2007 419 425
-
(2007)
Comput. Chem. Eng.
, vol.31
, Issue.5
, pp. 419-425
-
-
Lin, B.1
Recke, B.2
Knudsen, J.K.3
Jørgensen, S.B.4
-
22
-
-
79953832419
-
A reduced order soft sensor approach and its application to a continuous digester
-
H.J. Galicia, Q.P. He, and J. Wang A reduced order soft sensor approach and its application to a continuous digester J. Process Control 21 4 2011 489 500
-
(2011)
J. Process Control
, vol.21
, Issue.4
, pp. 489-500
-
-
Galicia, H.J.1
He, Q.P.2
Wang, J.3
-
23
-
-
0035965460
-
Some theoretical aspects of partial least squares regression
-
I.S. Helland Some theoretical aspects of partial least squares regression Chemom. Intell. Lab. Syst. 58 2 2001 97 107
-
(2001)
Chemom. Intell. Lab. Syst.
, vol.58
, Issue.2
, pp. 97-107
-
-
Helland, I.S.1
-
27
-
-
84858077893
-
The smooth-lasso and other l1 + l2-penalized methods
-
M. Hebiri, and S. van de Geer The smooth-lasso and other l1 + l2-penalized methods Electron. J. Stat. 5 2011 1184 1226
-
(2011)
Electron. J. Stat.
, vol.5
, pp. 1184-1226
-
-
Hebiri, M.1
Van De Geer, S.2
-
28
-
-
0002815256
-
Improved PLS algorithms
-
B. Dayal, and J.F. MacGregor Improved PLS algorithms J. Chemom. 11 1 1997 73 85
-
(1997)
J. Chemom.
, vol.11
, Issue.1
, pp. 73-85
-
-
Dayal, B.1
Macgregor, J.F.2
-
29
-
-
77953232934
-
Segmentation of ARX-models using sum-of-norms regularization
-
H. Ohlsson, L. Ljung, and S. Boyd Segmentation of ARX-models using sum-of-norms regularization Automatica 46 6 2010 1107 1111
-
(2010)
Automatica
, vol.46
, Issue.6
, pp. 1107-1111
-
-
Ohlsson, H.1
Ljung, L.2
Boyd, S.3
-
30
-
-
84875226586
-
Kernel spectral clustering with memory effect
-
R. Langone, C. Alzate, and J.A.K. Suykens Kernel spectral clustering with memory effect Physica A 392 10 2013 2588 2606
-
(2013)
Physica A
, vol.392
, Issue.10
, pp. 2588-2606
-
-
Langone, R.1
Alzate, C.2
Suykens, J.A.K.3
-
31
-
-
21244436700
-
Performance of some variable selection methods when multicollinearity is present
-
I.-G. Chong, and C.-H. Jun Performance of some variable selection methods when multicollinearity is present Chemom. Intell. Lab. Syst. 78 1 2005 103 112
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.78
, Issue.1
, pp. 103-112
-
-
Chong, I.-G.1
Jun, C.-H.2
-
32
-
-
0027561446
-
A plant-wide industrial process control problem
-
J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 3 1993 245 255
-
(1993)
Comput. Chem. Eng.
, vol.17
, Issue.3
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
33
-
-
0030217795
-
Decentralized control of the Tennessee Eastman challenge process
-
N. Lawrence Ricker Decentralized control of the Tennessee Eastman challenge process J. Process Control 6 4 1996 205 221
-
(1996)
J. Process Control
, vol.6
, Issue.4
, pp. 205-221
-
-
Lawrence Ricker, N.1
|