메뉴 건너뛰기




Volumn 59, Issue 24, 2004, Pages 5897-5908

Nonlinear dynamic process monitoring based on dynamic kernel PCA

Author keywords

Dynamic kernel principal component analysis; Fault detection; Monitoring statistic; Nonlinear dynamic process; Process monitoring; Wastewater treatment process

Indexed keywords

COMPUTER SIMULATION; DEMODULATION; ERROR ANALYSIS; NONLINEAR PROGRAMMING; WASTEWATER TREATMENT;

EID: 10044259622     PISSN: 00092509     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ces.2004.07.019     Document Type: Article
Times cited : (218)

References (33)
  • 1
    • 0042845639 scopus 로고
    • MATLAB routines for kernel density estimation and the graphical representation of archaeological data
    • Beardahy, C.C., Baxter, M.J., 1995. MATLAB routines for kernel density estimation and the graphical representation of archaeological data. Technical Report.
    • (1995) Technical Report
    • Beardahy, C.C.1    Baxter, M.J.2
  • 3
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • Chen, J., Liao, C.-M., 2002. Dynamic process fault monitoring based on neural network and PCA. Journal of Process Control 12, 277-289.
    • (2002) Journal of Process Control , vol.12 , pp. 277-289
    • Chen, J.1    Liao, C.-M.2
  • 5
    • 0004247571 scopus 로고    scopus 로고
    • The cost simulation benchmark
    • Copp, J.B., 2002. The cost simulation benchmark. Technical Report, http://www.ensic.u-nancy.fr/COSTWWTP.
    • (2002) Technical Report
    • Copp, J.B.1
  • 6
    • 0037972137 scopus 로고    scopus 로고
    • Shape statistics in kernel space for variational image segmentation
    • Cremers, D., Kohlberger, T., Schnörr, C., 2003. Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36 (9), 1929-1943.
    • (2003) Pattern Recognition , vol.36 , Issue.9 , pp. 1929-1943
    • Cremers, D.1    Kohlberger, T.2    Schnörr, C.3
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong, D., McAvoy, T.J., 1996. Nonlinear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 20, 65-78.
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 12
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson, J.E., Mudholkar, G., 1979. Control procedures for residuals associated with principal component analysis. Technometrics 21, 341-349.
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.2
  • 15
    • 0026113980 scopus 로고
    • Non-linear principal component analysis using autoassociative neural networks
    • Kramer, M.A., 1992. Non-linear principal component analysis using autoassociative neural networks. A.I.Ch.E. Journal 37, 233-243.
    • (1992) A.I.Ch.E. Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 18
    • 0032628394 scopus 로고    scopus 로고
    • EWMA control charts for monitoring the mean of autocorrelated processes
    • Lu, C.W., Reynolds Jr., M.R., 1999. EWMA control charts for monitoring the mean of autocorrelated processes. Journal of Quality Technology 31 (2), 166-188.
    • (1999) Journal of Quality Technology , vol.31 , Issue.2 , pp. 166-188
    • Lu, C.W.1    Reynolds Jr., M.R.2
  • 19
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor, J.F., Kourti, T., 1995. Statistical process control of multivariate processes. Control Engineering Practice 3, 403-414.
    • (1995) Control Engineering Practice , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 20
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin, E.B., Morris, A.J., 1996. Non-parametric confidence bounds for process performance monitoring charts. Journal of Process Control 6 (6), 349-358.
    • (1996) Journal of Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 23
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariable dynamic processes with state space models
    • Negiz, A., Cinar, A., 1997. Statistical monitoring of multivariable dynamic processes with state space models. A.I.Ch.E. Journal 43 (8), 209-221.
    • (1997) A.I.Ch.E. Journal , vol.43 , Issue.8 , pp. 209-221
    • Negiz, A.1    Cinar, A.2
  • 24
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC charts for monitoring batch processes. Technometrics 37, 41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 25
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell, EX., Chiang, L.H., Braatz, R.D., 2000. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 51, 81-93.
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.X.1    Chiang, L.H.2    Braatz, R.D.3
  • 26
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A.J., Müller, K.-R., 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 27
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modelling
    • Simoglou, A., Martin, E.B., Morris, A.J., 2002. Statistical performance monitoring of dynamic multivariate processes using state space modelling. Computers and Chemical Engineering 26, 909-920.
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 28
    • 0026238002 scopus 로고
    • A dynamic model of the clarification-thickening process
    • Takács, I., Patry, G.G., Nolasco, D., 1991. A dynamic model of the clarification-thickening process. Water Research 25, 1263-1271.
    • (1991) Water Research , vol.25 , pp. 1263-1271
    • Takács, I.1    Patry, G.G.2    Nolasco, D.3
  • 29
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimising neural networks inputs
    • Tan, S., Mavrovouniotis, M.L., 1995. Reducing data dimensionality through optimising neural networks inputs. A.I.Ch.E. Journal 41, 1471-1480.
    • (1995) A.I.Ch.E. Journal , vol.41 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 31
    • 0005178739 scopus 로고    scopus 로고
    • Development of a simulation protocol for evaluation of respirometry-based control strategies
    • Vanhooren, H., Nguyen, K., 1996. Development of a simulation protocol for evaluation of respirometry-based control strategies. Technical Report.
    • (1996) Technical Report
    • Vanhooren, H.1    Nguyen, K.2
  • 32
    • 0002878789 scopus 로고
    • Recent advances in multivariate statistical process control: Improving robustness and sensitivity
    • Wise, B.M., Ricker, N.L., 1991. Recent advances in multivariate statistical process control: improving robustness and sensitivity. Proceedings of IFAC International Symposium, ADCHEM '91, pp. 125-130.
    • (1991) Proceedings of IFAC International Symposium, ADCHEM '91 , pp. 125-130
    • Wise, B.M.1    Ricker, N.L.2
  • 33
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue, H.H., Qin, S.J., 2001. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research 40, 4403-4414.
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.