메뉴 건너뛰기




Volumn 149, Issue , 2015, Pages 1-11

Statistical process monitoring with integration of data projection and one-class classification

Author keywords

One class classification; PCA; Process monitoring; VBPCA

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOCHEMICAL OXYGEN DEMAND; CHEMICAL OXYGEN DEMAND; CHEMICAL REACTION; CLASSIFICATION ALGORITHM; CLASSIFIER; K NEAREST NEIGHBOR; KERNEL METHOD; METHODOLOGY; MULTIVARIATE ANALYSIS; ONE CLASS CLASSIFICATION; PH; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROCESS CONTROL; PROCESS OPTIMIZATION; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE; SUSPENDED PARTICULATE MATTER; SYSTEM ANALYSIS; VARIATIONAL BAYESIAN PRINCIPAL COMPONENT ANALYSIS; WASTE WATER TREATMENT PLANT;

EID: 84944034308     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2015.08.012     Document Type: Article
Times cited : (14)

References (36)
  • 1
    • 84900481482 scopus 로고    scopus 로고
    • Integrated monitoring, control and security of critical infrastructure systems
    • Brdys M.A. Integrated monitoring, control and security of critical infrastructure systems. Annu. Rev. Control. 2014, 38:47-70.
    • (2014) Annu. Rev. Control. , vol.38 , pp. 47-70
    • Brdys, M.A.1
  • 2
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • Kano M., Nakagawa Y. Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 2008, 32:12-24.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 3
    • 0032825185 scopus 로고    scopus 로고
    • PCA-SDG based process monitoring and fault diagnosis
    • Vedam H., Venkatasubramanian V. PCA-SDG based process monitoring and fault diagnosis. Control. Eng. Pract. 1999, 7:903-917.
    • (1999) Control. Eng. Pract. , vol.7 , pp. 903-917
    • Vedam, H.1    Venkatasubramanian, V.2
  • 4
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with missing data in MSPC: several methods, different interpretations, some examples
    • Arteaga F., Ferrer A. Dealing with missing data in MSPC: several methods, different interpretations, some examples. J. Chemom. 2002, 16:408-418.
    • (2002) J. Chemom. , vol.16 , pp. 408-418
    • Arteaga, F.1    Ferrer, A.2
  • 5
    • 1142309573 scopus 로고    scopus 로고
    • Sensor fault identification based on time-lagged PCA in dynamic processes
    • Lee C., Choi S.W., Lee I.B. Sensor fault identification based on time-lagged PCA in dynamic processes. Chemom. Intell. Lab. Syst. 2004, 70:165-178.
    • (2004) Chemom. Intell. Lab. Syst. , vol.70 , pp. 165-178
    • Lee, C.1    Choi, S.W.2    Lee, I.B.3
  • 6
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in partial least squares regression
    • Mehmood T., Liland K.H., Snipen L., Sæbø S. A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst. 2012, 118:62-69.
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3    Sæbø, S.4
  • 7
    • 80053639807 scopus 로고    scopus 로고
    • Fault detection based on Gaussian process latent variable models
    • Serradilla J., Shi J.Q., Morris A.J. Fault detection based on Gaussian process latent variable models. Chemom. Intell. Lab. Syst. 2011, 109:9-21.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 9-21
    • Serradilla, J.1    Shi, J.Q.2    Morris, A.J.3
  • 8
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C., Lee I.B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.2    Lee, I.B.3
  • 9
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J 2010, 56:2838-2849.
    • (2010) AIChE J , vol.56 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 10
    • 0030374103 scopus 로고    scopus 로고
    • Bootstrapping with noise: an effective regularization technique
    • RAVIV N.I.Y.U.V.A.L. Bootstrapping with noise: an effective regularization technique. Connect. Sci. 1996, 8:355-372.
    • (1996) Connect. Sci. , vol.8 , pp. 355-372
  • 11
    • 79956325552 scopus 로고    scopus 로고
    • One-class classifiers
    • Brereton R.G. One-class classifiers. J. Chemom. 2011, 25:225-246.
    • (2011) J. Chemom. , vol.25 , pp. 225-246
    • Brereton, R.G.1
  • 12
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Sci. 2006, 313:504-507.
    • (2006) Sci. , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 13
    • 79958703777 scopus 로고    scopus 로고
    • Localized Fisher discriminant analysis based complex chemical process monitoring
    • Yu J. Localized Fisher discriminant analysis based complex chemical process monitoring. AIChE J 2011, 57:1817-1828.
    • (2011) AIChE J , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 15
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang L.H., Kotanchek M.E., Kordon A.K. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Comput. Chem. Eng. 2004, 28:1389-1401.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1389-1401
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 16
    • 84878135977 scopus 로고    scopus 로고
    • Applicability domain of soft sensor models based on one-class support vector machine
    • Kaneko H., Funatsu K. Applicability domain of soft sensor models based on one-class support vector machine. AIChE J 2013, 59:2046-2050.
    • (2013) AIChE J , vol.59 , pp. 2046-2050
    • Kaneko, H.1    Funatsu, K.2
  • 17
    • 0242333191 scopus 로고    scopus 로고
    • A kernel-distance-based multivariate control chart using support vector methods
    • Sun R., Tsung F. A kernel-distance-based multivariate control chart using support vector methods. Int. J. Prod. Res. 2003, 41:2975-2989.
    • (2003) Int. J. Prod. Res. , vol.41 , pp. 2975-2989
    • Sun, R.1    Tsung, F.2
  • 18
    • 29344469347 scopus 로고    scopus 로고
    • Kernel distance-based robust support vector methods and its application in developing a robust K-chart
    • Kumar S., Choudhary A.K., Kumar M., Shankar R., Tiwari M.K. Kernel distance-based robust support vector methods and its application in developing a robust K-chart. Int. J. Prod. Res. 2006, 41:77-96.
    • (2006) Int. J. Prod. Res. , vol.41 , pp. 77-96
    • Kumar, S.1    Choudhary, A.K.2    Kumar, M.3    Shankar, R.4    Tiwari, M.K.5
  • 21
    • 84900011520 scopus 로고    scopus 로고
    • One-class classification: taxonomy of study and review of techniques
    • Khan S.S., Madden M.G. One-class classification: taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29:345-374.
    • (2014) Knowl. Eng. Rev. , vol.29 , pp. 345-374
    • Khan, S.S.1    Madden, M.G.2
  • 23
    • 84894746753 scopus 로고    scopus 로고
    • Statistical monitoring of wastewater treatment plants using variational Bayesian PCA
    • Liu Y., Pan Y., Sun Z., Huang D. Statistical monitoring of wastewater treatment plants using variational Bayesian PCA. Ind. Eng. Chem. Res. 2014, 53:3272-3282.
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 3272-3282
    • Liu, Y.1    Pan, Y.2    Sun, Z.3    Huang, D.4
  • 24
    • 64249101035 scopus 로고    scopus 로고
    • Moving window kernel PCA for adaptive monitoring of nonlinear processes
    • Liu X., Kruger U., Littler T., Xie L., Wang S. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemom. Intell. Lab. Syst. 2009, 96:132-143.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 132-143
    • Liu, X.1    Kruger, U.2    Littler, T.3    Xie, L.4    Wang, S.5
  • 25
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • Cheng C., Chiu M.S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.S.2
  • 26
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim D., Lee I.B. Process monitoring based on probabilistic PCA. Chemom. Intell. Lab. Syst. 2003, 67:109-123.
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.1    Lee, I.B.2
  • 27
    • 77956916974 scopus 로고    scopus 로고
    • Practical approaches to principal component analysis in the presence of missing values
    • Raiko A.I.T. Practical approaches to principal component analysis in the presence of missing values. J. Mach. Learn. Res. 2010, 11:1957-2000.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1957-2000
    • Raiko, A.I.T.1
  • 28
    • 84873681137 scopus 로고    scopus 로고
    • Combination of similarity rankings using data fusion
    • Willett P. Combination of similarity rankings using data fusion. J. Chem. Inf. Model. 2013, 53:1-10.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1-10
    • Willett, P.1
  • 29
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997, 30:1145-1159.
    • (1997) Pattern Recogn. , vol.30 , pp. 1145-1159
    • Bradley, A.1
  • 30
    • 84912036156 scopus 로고    scopus 로고
    • Classification study of solvation free energies of organic molecules using machine learning techniques
    • Narayana Moorthy N.S.H., Martins S.A., Sousa S.F., Ramos M.J., Fernandes P.A. Classification study of solvation free energies of organic molecules using machine learning techniques. RSC Adv. 2014, 4:61624-61630.
    • (2014) RSC Adv. , vol.4 , pp. 61624-61630
    • Narayana Moorthy, N.S.H.1    Martins, S.A.2    Sousa, S.F.3    Ramos, M.J.4    Fernandes, P.A.5
  • 33
    • 84863278909 scopus 로고    scopus 로고
    • Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor
    • Liu Y., Huang D., Li Y. Development of interval soft sensors using enhanced just-in-time learning and inductive confidence predictor. Ind. Eng. Chem. Res. 2011, 51:3356-3367.
    • (2011) Ind. Eng. Chem. Res. , vol.51 , pp. 3356-3367
    • Liu, Y.1    Huang, D.2    Li, Y.3
  • 34
    • 84975742780 scopus 로고    scopus 로고
    • Ensemble local kernel learning for online prediction of distributed product outputs in chemical processes
    • Liu Y., Zhang Z.J., Chen J. Ensemble local kernel learning for online prediction of distributed product outputs in chemical processes. Chem. Eng. Sci. 2015, 137:140-151.
    • (2015) Chem. Eng. Sci. , vol.137 , pp. 140-151
    • Liu, Y.1    Zhang, Z.J.2    Chen, J.3
  • 35
    • 84912562670 scopus 로고    scopus 로고
    • Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models
    • Liu Y., Gao Z.L. Real-time property prediction for an industrial rubber-mixing process with probabilistic ensemble Gaussian process regression models. J. Appl. Polym. Sci. 2015, 132:1905-1913.
    • (2015) J. Appl. Polym. Sci. , vol.132 , pp. 1905-1913
    • Liu, Y.1    Gao, Z.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.