메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 431-449

Data-driven design of monitoring and diagnosis systems for dynamic processes: A review of subspace technique based schemes and some recent results

Author keywords

Data driven methods; Observer based methods; Parity space; Process monitoring and fault diagnosis; Subspace identification methods

Indexed keywords

DESIGN; FAILURE ANALYSIS; FAULT DETECTION; FINITE DIFFERENCE METHOD; PROCESS CONTROL; PROCESS MONITORING; REAL TIME SYSTEMS;

EID: 84897108321     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2013.08.011     Document Type: Article
Times cited : (206)

References (57)
  • 1
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • C.F. Alcala, and S.J. Qin Reconstruction-based contribution for process monitoring Automatica 45 2009 1593 1600
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.F.1    Qin, S.J.2
  • 2
    • 0004255876 scopus 로고
    • Addison-Wesley Publishing Company Reading, Massachusetts
    • K.J. Aström, and B. Wittenmark Adaptive Control 1995 Addison-Wesley Publishing Company Reading, Massachusetts
    • (1995) Adaptive Control
    • Aström, K.J.1    Wittenmark, B.2
  • 7
    • 84886674516 scopus 로고    scopus 로고
    • A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
    • On-line available under paper number TII-12-0329
    • S.X. Ding, S. Yin, K. Peng, H. Hao, and B. Shen A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill IEEE Trans. Ind. Inform. On-line available under paper number TII-12-0329 2013
    • (2013) IEEE Trans. Ind. Inform.
    • Ding, S.X.1    Yin, S.2    Peng, K.3    Hao, H.4    Shen, B.5
  • 9
    • 72149132838 scopus 로고    scopus 로고
    • Subspace method aided data-driven design of fault detection and isolation systems
    • S.X. Ding, P. Zhang, A. Naik, E. Ding, and B. Huang Subspace method aided data-driven design of fault detection and isolation systems J. Process Contr. 19 2009 1496 1510
    • (2009) J. Process Contr. , vol.19 , pp. 1496-1510
    • Ding, S.X.1    Zhang, P.2    Naik, A.3    Ding, E.4    Huang, B.5
  • 12
    • 84861752680 scopus 로고    scopus 로고
    • Identification of fault estimation filter from I/O data for systems with stable inversion
    • J. Dong, and M. Verhaegen Identification of fault estimation filter from I/O data for systems with stable inversion IEEE Trans. Atom. Contr. 57 2012 1347 1362
    • (2012) IEEE Trans. Atom. Contr. , vol.57 , pp. 1347-1362
    • Dong, J.1    Verhaegen, M.2
  • 13
    • 84866507616 scopus 로고    scopus 로고
    • Robust fault detection with statistical uncertainty in identified parameters
    • J. Dong, M. Verhaegen, and F. Gustafsson Robust fault detection with statistical uncertainty in identified parameters IEEE Trans. signal Process. 60 2012 5064 5076
    • (2012) IEEE Trans. Signal Process. , vol.60 , pp. 5064-5076
    • Dong, J.1    Verhaegen, M.2    Gustafsson, F.3
  • 14
    • 0031378596 scopus 로고    scopus 로고
    • Survey of robust residual generation and evaluation methods in observer-based fault detection systems
    • PII S0959152497000164
    • P.M. Frank, and X. Ding Survey of robust residual generation and evaluation methods in observer-based fault detection systems J. Process Contr. 7 6 1997 403 424 (Pubitemid 127400666)
    • (1997) Journal of Process Control , vol.7 , Issue.6 , pp. 403-424
    • Frank, P.M.1    Ding, X.2
  • 15
    • 84857790824 scopus 로고    scopus 로고
    • Fault detection and isolation in transient states using principal component analysis
    • D. Garcia-Alvares, M.J. Fuente, and G.J. Sainz Fault detection and isolation in transient states using principal component analysis J. Process Contr. 22 2012 551 563
    • (2012) J. Process Contr. , vol.22 , pp. 551-563
    • Garcia-Alvares, D.1    Fuente, M.J.2    Sainz, G.J.3
  • 20
    • 77951880498 scopus 로고    scopus 로고
    • A survey of fault detection, isolation, and reconfiguration methods
    • I. Hwang, S. Kim, Y. Kim, and C. Seah A survey of fault detection, isolation, and reconfiguration methods IEEE Trans. Contr. Syst. Technol. 18 2010 636 653
    • (2010) IEEE Trans. Contr. Syst. Technol. , vol.18 , pp. 636-653
    • Hwang, I.1    Kim, S.2    Kim, Y.3    Seah, C.4
  • 23
    • 79955607416 scopus 로고    scopus 로고
    • Reconstruction based fault prognosis for continuous processes
    • G. Li, S.J. Qin, Y. Ji, and D. Zhou Reconstruction based fault prognosis for continuous processes Contr. Eng. Practice 18 2010 1211 1219
    • (2010) Contr. Eng. Practice , vol.18 , pp. 1211-1219
    • Li, G.1    Qin, S.J.2    Ji, Y.3    Zhou, D.4
  • 24
    • 0035546347 scopus 로고    scopus 로고
    • Consistent dynamic PCA based on errors-in-variables subspace identification
    • DOI 10.1016/S0959-1524(00)00041-X, PII S095915240000041X
    • W. Li, and S.J. Qin Consistent dynamic PCA based on errors-in-variables subspace identification J. Process Contr. 11 2001 661 678 (Pubitemid 32951361)
    • (2001) Journal of Process Control , vol.11 , Issue.6 , pp. 661-678
    • Li, W.1    Qin S.Joe2
  • 27
    • 77956464037 scopus 로고    scopus 로고
    • Robust detection and estimation in dynamic systems and statistical signal processing: Intersection, parallel paths and applications
    • R. Mangoubi, M. Desai, A. Edelmayer, and P. Sammak Robust detection and estimation in dynamic systems and statistical signal processing: intersection, parallel paths and applications Eur. J. Contr. 15 2009 348 369
    • (2009) Eur. J. Contr. , vol.15 , pp. 348-369
    • Mangoubi, R.1    Desai, M.2    Edelmayer, A.3    Sammak, P.4
  • 28
    • 79960909973 scopus 로고    scopus 로고
    • Parameterization and identification of multivariable state-space systems: A canonical approach
    • G. Mercere, and L. Bako Parameterization and identification of multivariable state-space systems: a canonical approach Automatica 47 2011 1547 1555
    • (2011) Automatica , vol.47 , pp. 1547-1555
    • Mercere, G.1    Bako, L.2
  • 29
    • 77955513371 scopus 로고    scopus 로고
    • Recursive identification algorithms to design fault detection systems
    • A.S. Naik, S. Yin, S.X. Ding, and P. Zhang Recursive identification algorithms to design fault detection systems J. Process Contr. 20 2010 957 965
    • (2010) J. Process Contr. , vol.20 , pp. 957-965
    • Naik, A.S.1    Yin, S.2    Ding, S.X.3    Zhang, P.4
  • 31
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S. Qin Statistical process monitoring: basics and beyond J. Chemometr. 17 2003 480 502
    • (2003) J. Chemometr. , vol.17 , pp. 480-502
    • Qin, S.1
  • 32
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • PII S0098135497002627
    • S.J. Qin Recursive PLS algorithms for adaptive data modeling Comput. chem. Eng. 22 1998 503 514 (Pubitemid 128714151)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 33
    • 33747893411 scopus 로고    scopus 로고
    • An overview of subspace identification
    • DOI 10.1016/j.compchemeng.2006.05.045, PII S009813540600158X, Papers from Chemical Process Control VII CPC VII
    • S.J. Qin An overview of subspace identification Comput. Chem. Eng. 30 2006 1502 1513 (Pubitemid 44292280)
    • (2006) Computers and Chemical Engineering , vol.30 , Issue.10-12 , pp. 1502-1513
    • Qin, S.J.1
  • 34
    • 79960904943 scopus 로고    scopus 로고
    • Data-driven fault detection and diagnosis for complex industrial processes
    • S.J. Qin Data-driven fault detection and diagnosis for complex industrial processes Proc. IFAC SAFEPROCESS Symp. 2009 1115 1125
    • (2009) Proc. IFAC SAFEPROCESS Symp. , pp. 1115-1125
    • Qin, S.J.1
  • 35
    • 0001212550 scopus 로고    scopus 로고
    • Detection and identification of faulty sensors in dynamic processes
    • DOI 10.1002/aic.690470711
    • S.J. Qin, and W. Li Detection and identification of faulty sensors in dynamic processes AIChE J. 47 2001 1581 1593 (Pubitemid 36858841)
    • (2001) AIChE Journal , vol.47 , Issue.7 , pp. 1581-1593
    • Qin, S.J.1    Li, W.2
  • 36
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • M.M. Rashid, and J. Yu A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemometr. Intell. Lab. Syst. 115 2012 44 58
    • (2012) Chemometr. Intell. Lab. Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 38
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • DOI 10.1016/S0169-7439(00)00058-7, PII S0169743900000587
    • E.L. Russell, L.H. Chiang, and R.D. Braatz Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis Chemometr. Intell. Lab. Syst. 51 2000 81 93 (Pubitemid 30251932)
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , Issue.1 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 40
    • 40749117689 scopus 로고    scopus 로고
    • A continuous stirred tank heater simulation model with applications
    • N. Thornhill, S. Patwardhan, and S. Shah A continuous stirred tank heater simulation model with applications J. Process contr. 18 2008
    • (2008) J. Process Contr. , vol.18
    • Thornhill, N.1    Patwardhan, S.2    Shah, S.3
  • 41
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part III: Process history based methods
    • DOI 10.1016/S0098-1354(02)00162-X, PII S009813540200162X
    • V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin A review of process fault detection and diagnosis part III: process history based methods Comput. Chem. Eng. 27 2003 327 346 (Pubitemid 36285964)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 42
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part I: Quantitative model-based methods
    • DOI 10.1016/S0098-1354(02)00160-6, PII S0098135402001606
    • V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri A review of process fault detection and diagnosis part I: quantitative model-based methods Comput. Chem. Eng. 27 2003 293 311 (Pubitemid 36285962)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 43
    • 84655163907 scopus 로고    scopus 로고
    • Data-driven diagnosis of sensor precision degradation in the presence of control
    • Y. Wan, and H. Ye Data-driven diagnosis of sensor precision degradation in the presence of control J. Process Contr. 22 2012 26 40
    • (2012) J. Process Contr. , vol.22 , pp. 26-40
    • Wan, Y.1    Ye, H.2
  • 44
    • 0036778659 scopus 로고    scopus 로고
    • A new subspace identification approach based on principal component analysis
    • DOI 10.1016/S0959-1524(02)00016-1, PII S0959152402000161
    • J. Wang, and S.J. Qin A new subspace identification approach based on principle component analysis J. Process Contr. 12 2002 841 855 (Pubitemid 34772635)
    • (2002) Journal of Process Control , vol.12 , Issue.8 , pp. 841-855
    • Wang, J.1    Qin, S.J.2
  • 45
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • X. Wang, U. Kruger, and G.W. Irwin Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 44 2005 5691 5702
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 46
    • 80053624122 scopus 로고    scopus 로고
    • Subspace aided data-driven design of robust fault detection and isolation systems
    • Y. Wang, G. Ma, S.X. Ding, and C. Li Subspace aided data-driven design of robust fault detection and isolation systems Automatica 47 2011 2474 2480
    • (2011) Automatica , vol.47 , pp. 2474-2480
    • Wang, Y.1    Ma, G.2    Ding, S.X.3    Li, C.4
  • 48
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • S. Yin, S.X. Ding, A. Haghani, H. Hao, and P. Zhang A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process J. Process Contr. 22 2012 1567 1581
    • (2012) J. Process Contr. , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 49
    • 84870160474 scopus 로고    scopus 로고
    • Data-driven adaptive observer for fault diagnosis
    • Online available: article ID 832836, doi:10.1155/2012/832836
    • S. Yin, X. Yang, and H.R. Karimi Data-driven adaptive observer for fault diagnosis Math. Prob. Eng. 2012 Online available: article ID 832836, doi:10.1155/2012/832836
    • (2012) Math. Prob. Eng.
    • Yin, S.1    Yang, X.2    Karimi, H.R.3
  • 50
    • 84864912479 scopus 로고    scopus 로고
    • Multiway discrete hidden Markov model-based approach for dynamic batch process monitoring and fault classification
    • J. Yu Multiway discrete hidden Markov model-based approach for dynamic batch process monitoring and fault classification AIChE J. 58 2012 2714 2725
    • (2012) AIChE J. , vol.58 , pp. 2714-2725
    • Yu, J.1
  • 51
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • J. Yu A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis J. Process Contr. 2012 778 788
    • (2012) J. Process Contr. , pp. 778-788
    • Yu, J.1
  • 52
    • 84872871509 scopus 로고    scopus 로고
    • A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data
    • J. Yu A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data AIChE J. 59 2013 407 419
    • (2013) AIChE J. , vol.59 , pp. 407-419
    • Yu, J.1
  • 53
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with bayesian inference-based finite Gaussian mixture models
    • DOI 10.1002/aic.11515
    • J. Yu, and S. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AICHe J. 54 2008 1811 1829 (Pubitemid 352006869)
    • (2008) AIChE Journal , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 54
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • J. Yu, and S. Qin Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.2
  • 55
    • 38749083084 scopus 로고    scopus 로고
    • On fault detection in linear discrete-time periodic and sampled-data systems (survey)
    • P. Zhang, and S.X. Ding On fault detection in linear discrete-time periodic and sampled-data systems (survey) J. Contr. Sci. Eng. 2008 1 18
    • (2008) J. Contr. Sci. Eng. , pp. 1-18
    • Zhang, P.1    Ding, S.X.2
  • 56
    • 0036493714 scopus 로고    scopus 로고
    • Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems
    • DOI 10.1109/9.989154, PII S0018928602028350
    • Q. Zhang Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems IEEE Trans. Autom. Contr. 47 2002 525 529 (Pubitemid 34531061)
    • (2002) IEEE Transactions on Automatic Control , vol.47 , Issue.3 , pp. 525-529
    • Zhang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.