메뉴 건너뛰기




Volumn 48, Issue 20, 2009, Pages 9163-9174

Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)

Author keywords

[No Author keywords available]

Indexed keywords

BATCH MONITORING; BATCH PROCESS; BATCH PROCESS MONITORING; COVARIANCE STRUCTURES; FED BATCHES; GAUSSIANS; LINEAR METHODS; MODELING STRATEGY; NON-GAUSSIAN FEATURES; NONLINEAR CHARACTERISTICS; ONLINE MONITORING; PROCESS DATA; STATISTICAL MODELING; SUBPHASES; TIME VARYING;

EID: 70350318936     PISSN: 08885885     EISSN: None     Source Type: Journal    
DOI: 10.1021/ie8012874     Document Type: Article
Times cited : (86)

References (59)
  • 1
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis, using multivariate projection methods
    • Kourti, T.; MacGregor, J. F. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemom. Intell. Lab. Syst. 1995, 28, 3.
    • (1995) Chemom. Intell. Lab. Syst. , vol.28 , pp. 3
    • Kourti, T.1    MacGregor, J.F.2
  • 2
    • 0000080198 scopus 로고    scopus 로고
    • Improved process understanding using multiway principal component analysis
    • Kosanovich, K. A.; Dahl, K. S.; Piovoso, M. J. Improved process understanding using multiway principal component analysis. Ind. Eng. Chem. Res. 1996, 35, 138.
    • (1996) Ind. Eng. Chem. Res. , vol.35 , pp. 138
    • Kosanovich, K.A.1    Dahl, K.S.2    Piovoso, M.J.3
  • 4
    • 0034015053 scopus 로고    scopus 로고
    • Multivariate statistical process control of batch processes based on three-way models
    • Louwerse, D. J.; Smilde, A. K. Multivariate statistical process control of batch processes based on three-way models. Chem. Eng. Sci. 2000, 55, 1225.
    • (2000) Chem. Eng. Sci. , vol.55 , pp. 1225
    • Louwerse, D.J.1    Smilde, A.K.2
  • 7
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos, P.; MacGregor, J. F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37, 41.
    • (1995) Technometrics , vol.37 , pp. 41
    • Nomikos, P.1    MacGregor, J.F.2
  • 8
    • 0028825273 scopus 로고
    • Multiway partial least squares in monitoring batch processes
    • Nomikos, P.; MacGregor, J. F. Multiway partial least squares in monitoring batch processes. Chemom. Intell. Lab. Syst. 1995, 30, 97.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 97
    • Nomikos, P.1    MacGregor, J.F.2
  • 9
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal components analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • Wise, B. M.; Gallagher, N. B.; Butler, S. W.; White, D. D., Jr.; Barna, G. G. A comparison of principal component analysis, multiway principal components analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process. J. Chemom. 1999, 13, 379.
    • (1999) J. Chemom. , vol.13 , pp. 379
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White Jr., D.D.4    Barna, G.G.5
  • 10
    • 1642574301 scopus 로고    scopus 로고
    • Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations
    • Ü ndey, C.; Tatara, E.; Ç inar, A. Intelligent real-time performance monitoring and quality prediction for batch/fed-batch cultivations. J. Biotechnol. 2004, 108, 61.
    • (2004) J. Biotechnol. , vol.108 , pp. 61
    • Ündey, C.1    Tatara, E.2    Çinar, A.3
  • 11
    • 0037073192 scopus 로고    scopus 로고
    • Enhanced bio-manufacturing through advanced multivariate statistical technologies
    • Martin, E. B.; Morris, A. J. Enhanced bio-manufacturing through advanced multivariate statistical technologies. J. Biotechnol. 2002, 99, 223.
    • (2002) J. Biotechnol. , vol.99 , pp. 223
    • Martin, E.B.1    Morris, A.J.2
  • 12
    • 54949139555 scopus 로고    scopus 로고
    • The integration of spectroscopic and process data for enhanced process performance monitoring
    • Wong, C. W. L.; Escott, R.; Martin, E. B.; Morris, A. J. The integration of spectroscopic and process data for enhanced process performance monitoring. Can. J. Chem. Eng. 2008, 86, 905.
    • (2008) Can. J. Chem. Eng. , vol.86 , pp. 905
    • Wong, C.W.L.1    Escott, R.2    Martin, E.B.3    Morris, A.J.4
  • 13
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept
    • Comon, P. Independent component analysis, a new concept. Signal Process. 1994, 36, 287.
    • (1994) Signal Process. , vol.36 , pp. 287
    • Comon, P.1
  • 14
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 1999, 10, 626.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626
    • Hyvärinen, A.1
  • 15
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen, A.; Oja, E. Independent component analysis: algorithms and applications. Neural Networks 2000, 13, 411.
    • (2000) Neural Networks , vol.13 , pp. 411
    • Hyvärinen, A.1    Oja, E.2
  • 16
    • 33845793937 scopus 로고    scopus 로고
    • Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing
    • Ahn, H. C.; Choi, E. S.; Han, I. G. Extracting underlying meaningful features and canceling noise using independent component analysis for direct marketing. Expert Syst. Appl. 2007, 33, 181.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 181
    • Ahn, H.C.1    Choi, E.S.2    Han, I.G.3
  • 17
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee, J.-M.; Yoo, C. K.; Lee, I.-B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14, 467.
    • (2004) J. Process Control , vol.14 , pp. 467
    • Lee, J.-M.1    Yoo, C.K.2    Lee, I.-B.3
  • 18
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee, J.-M.; Yoo, C. K.; Lee, I.-B. Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem. Eng. Sci. 2004, 59, 2995.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2995
    • Lee, J.-M.1    Yoo, C.K.2    Lee, I.-B.3
  • 19
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • Yoo, C. K.; Lee, J.-M.; Vanrolleghem, P. A.; Lee, I.-B. On-line monitoring of batch processes using multiway independent component analysis. Chemom. Intell. Lab. Syst. 2004, 71, 151.
    • (2004) Chemom. Intell. Lab. Syst. , vol.71 , pp. 151
    • Yoo, C.K.1    Lee, J.-M.2    Vanrolleghem, P.A.3    Lee, I.-B.4
  • 20
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • Kano, M.; Tanaka, S.; Hasebe, S.; Hashimoto, I.; Ohno, H. Monitoring independent components for fault detection. AIChE J. 2003, 49, 969.
    • (2003) AIChE J. , vol.49 , pp. 969
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 21
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: Application of independent component analysis and external analysis
    • Kano, M.; Hasebe, S.; Hashimoto, I.; Ohno, H. Evolution of multivariate statistical process control: Application of independent component analysis and external analysis. Comput. Chem. Eng. 2004, 28, 1157.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1157
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 22
    • 4944253785 scopus 로고    scopus 로고
    • Statistical process control charts for batch operations based on independent component analysis
    • Albazzaz, H.; Wang, X. Z. Statistical process control charts for batch operations based on independent component analysis. Ind. Eng. Chem. Res. 2004, 43, 6731.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 6731
    • Albazzaz, H.1    Wang, X.Z.2
  • 23
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee, J.-M.; Qin, S. J.; Lee, I.-B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52, 3501.
    • (2006) AIChE J. , vol.52 , pp. 3501
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 25
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge, Z. Q.; Song, Z. H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res. 2007, 46, 2054.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054
    • Ge, Z.Q.1    Song, Z.H.2
  • 26
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • Widodo, A.; Yang, B.-S. Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Syst. Appl. 2007, 33, 241.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 241
    • Widodo, A.1    Yang, B.-S.2
  • 27
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho, J.-H.; Lee, J.-M.; Choi, S. W.; Lee, D. K.; Lee, I.-B. Fault identification for process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2005, 60, 279.
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 279
    • Cho, J.-H.1    Lee, J.-M.2    Choi, S.W.3    Lee, D.K.4    Lee, I.-B.5
  • 29
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee, J.-M.; Yoo, C. K.; Lee, I.-B. Fault detection of batch processes using multiway kernel principal component analysis. Comput. Chem. Eng. 2004, 28, 1837.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1837
    • Lee, J.-M.1    Yoo, C.K.2    Lee, I.-B.3
  • 30
    • 11144331636 scopus 로고    scopus 로고
    • Fault detection and identification of nonlinear processes based on kernel PCA
    • Choi, S. W.; Lee, C.; Lee, J.-M.; Park, J. H.; Lee, I.-B. Fault detection and identification of nonlinear processes based on kernel PCA. Chemom. Intell. Lab. Syst. 2005, 75, 55.
    • (2005) Chemom. Intell. Lab. Syst. , vol.75 , pp. 55
    • Choi, S.W.1    Lee, C.2    Lee, J.-M.3    Park, J.H.4    Lee, I.-B.5
  • 31
    • 36148959019 scopus 로고    scopus 로고
    • Improved kernel principal component analysis for fault detection
    • Cui, P. L.; Li, J. H.; Wang, G. Z. Improved kernel principal component analysis for fault detection. Expert Syst. Appl. 2008, 34, 1210-1219.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1210-1219
    • Cui, P.L.1    Li, J.H.2    Wang, G.Z.3
  • 32
    • 33847300613 scopus 로고    scopus 로고
    • Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
    • NicolaÏ, B. M.; Theron, K. I.; Lammertyn, J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemom. Intell. Lab. Syst. 2007, 85, 243.
    • (2007) Chemom. Intell. Lab. Syst. , vol.85 , pp. 243
    • NicolaÏ, B.M.1    Theron, K.I.2    Lammertyn, J.3
  • 33
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition
    • Yang, J.; Frangi, A. F.; Yang, J.-Y.; Zhang, D.; Jin, Z. KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. 2005, 27, 230.
    • (2005) IEEE Trans. Pattern Anal. , vol.27 , pp. 230
    • Yang, J.1    Frangi, A.F.2    Yang, J.-Y.3    Zhang, D.4    Jin, Z.5
  • 34
    • 33750429920 scopus 로고    scopus 로고
    • Nonlinear feature extraction and classification of multivariate process data in kernel feature space
    • Cho, H.-W. Nonlinear feature extraction and classification of multivariate process data in kernel feature space. Expert Syst. Appl. 2007, 32, 534.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 534
    • Cho, H.-W.1
  • 35
    • 33846432352 scopus 로고    scopus 로고
    • Identification of contributing variables using kernelbased discriminant modeling and reconstruction
    • Cho, H.-W. Identification of contributing variables using kernelbased discriminant modeling and reconstruction. Expert Syst. Appl. 2007, 33, 274.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 274
    • Cho, H.-W.1
  • 36
    • 36348941124 scopus 로고    scopus 로고
    • Fault detection of nonlinear process using multiway kernel independent component analysis
    • Zhang, Y. W.; Qin, S. J. Fault detection of nonlinear process using multiway kernel independent component analysis. Ind. Eng. Chem. Res. 2007, 46, 7780.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 7780
    • Zhang, Y.W.1    Qin, S.J.2
  • 37
    • 53349175658 scopus 로고    scopus 로고
    • Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)
    • Zhang, Y. W. Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM). Ind. Eng. Chem. Res. 2008, 47, 6961.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 6961
    • Zhang, Y.W.1
  • 38
    • 22844447009 scopus 로고    scopus 로고
    • Kernel ICA: An alternative formulation and its application to face recognition
    • Yang, J.; Gao, X.; Zhang, D.; Yang, J.-Y. Kernel ICA: An alternative formulation and its application to face recognition. Pattern Recogn. 2005, 38, 1784.
    • (2005) Pattern Recogn. , vol.38 , pp. 1784
    • Yang, J.1    Gao, X.2    Zhang, D.3    Yang, J.-Y.4
  • 39
    • 0032517828 scopus 로고    scopus 로고
    • Modelling and diagnostics of batch processes and analogous kinetic experiments
    • Wold, S.; Kettaneh, N.; Friden, H.; Holmberg, A. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemom. Intell. Lab. Syst. 1998, 44, 331.
    • (1998) Chemom. Intell. Lab. Syst. , vol.44 , pp. 331
    • Wold, S.1    Kettaneh, N.2    Friden, H.3    Holmberg, A.4
  • 40
    • 2342642072 scopus 로고    scopus 로고
    • Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis
    • Lee, J.-M.; Yoo, C. K.; Lee, I.-B. Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis. J. Biotechnol. 2004, 110, 119.
    • (2004) J. Biotechnol. , vol.110 , pp. 119
    • Lee, J.-M.1    Yoo, C.K.2    Lee, I.-B.3
  • 41
    • 1042266980 scopus 로고    scopus 로고
    • On-line batch process monitoring using different unfolding method and independent component analysis
    • Lee, J.-M.; Yoo, C. K. On-line batch process monitoring using different unfolding method and independent component analysis. J. Chem. Eng. Jpn. 2003, 36, 1384.
    • (2003) J. Chem. Eng. Jpn. , vol.36 , pp. 1384
    • Lee, J.-M.1    Yoo, C.K.2
  • 43
    • 0141566609 scopus 로고    scopus 로고
    • Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis
    • Ü ndey, C.; Ertunç, S.; Ç inar, A. Online batch/fed-batch process performance monitoring, quality prediction, and variable-contribution analysis for diagnosis. Ind. Eng. Chem. Res. 2003, 42, 4645.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 4645
    • Ündey, C.1    Ertunç, S.2    Çinar, A.3
  • 44
    • 1042268071 scopus 로고    scopus 로고
    • A sub-PCA modeling and online monitoring strategy for batch processes
    • Lu, N. Y.; Gao, F. R.; Wang, F. L. A sub-PCA modeling and online monitoring strategy for batch processes. AIChE J. 2004, 50, 255.
    • (2004) AIChE J. , vol.50 , pp. 255
    • Lu, N.Y.1    Gao, F.R.2    Wang, F.L.3
  • 46
  • 48
    • 0036805179 scopus 로고    scopus 로고
    • Statistical monitoring of multistage, multiphase batch processes
    • Ündey, C.; Cinar, A. Statistical monitoring of multistage, multiphase batch processes. IEEE Control Syst. Mag. 2002, 22, 40.
    • (2002) IEEE Control Syst. Mag. , vol.22 , pp. 40
    • Ündey, C.1    Cinar, A.2
  • 49
    • 21844434004 scopus 로고    scopus 로고
    • Fault detection properties of global, local and time evolving models for batch process monitoring
    • Ramaker, H.-J.; van Sprang, E. N. M.; Westerhuis, J. A.; Smilde, A. K. Fault detection properties of global, local and time evolving models for batch process monitoring. J. Process Control 2005, 15, 799.
    • (2005) J. Process Control , vol.15 , pp. 799
    • Ramaker, H.-J.1    Van Sprang, E.N.M.2    Westerhuis, J.A.3    Smilde, A.K.4
  • 50
    • 33750361533 scopus 로고    scopus 로고
    • Online monitoring of batch processes using multi-phase principal component analysis
    • Camacho, J.; Picó, J. Online monitoring of batch processes using multi-phase principal component analysis. J. Process Control 2006, 16, 1021.
    • (2006) J. Process Control , vol.16 , pp. 1021
    • Camacho, J.1    Picó, J.2
  • 51
    • 39449135610 scopus 로고    scopus 로고
    • Improved knowledge extraction and phase-based quality prediction for batch processes
    • Zhao, C. H.; Wang, F. L.; Mao, Z. Z.; Lu, N. Y.; Jia, M. X. Improved knowledge extraction and phase-based quality prediction for batch processes. Ind. Eng. Chem. Res. 2008, 47, 825.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 825
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.Z.3    Lu, N.Y.4    Jia, M.X.5
  • 52
    • 0004063090 scopus 로고    scopus 로고
    • Prentice-Hall: Englewood Cliffs, NJ
    • Haykin, S. Neural Networks; Prentice-Hall: Englewood Cliffs, NJ, 1999.
    • (1999) Neural Networks
    • Haykin, S.1
  • 56
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • Chen, Q.; Wynne, R. J.; Goulding, P.; Sandoz, D. The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Eng. Pract. 2000, 8, 531.
    • (2000) Control Eng. Pract. , vol.8 , pp. 531
    • Chen, Q.1    Wynne, R.J.2    Goulding, P.3    Sandoz, D.4
  • 57
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin, E. B.; Morris, A. J. Non-parametric confidence bounds for process performance monitoring charts. J. Process Control 1996, 6, 349.
    • (1996) J. Process Control , vol.6 , pp. 349
    • Martin, E.B.1    Morris, A.J.2
  • 58
  • 59
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: Penicillin production
    • Birol, G.; Ü ndey, C.; Cinar, A. A modular simulation package for fed-batch fermentation: Penicillin production. Comput. Chem. Eng. 2002, 26, 1553.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553
    • Birol, G.1    Ündey, C.2    Cinar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.