메뉴 건너뛰기




Volumn 26, Issue , 2015, Pages 90-101

Improving classification-based diagnosis of batch processes through data selection and appropriate pretreatment

Author keywords

Batch processes; Fault classification; Fault detection isolation; Mathematical modeling; Process control

Indexed keywords

ALGORITHMS; BATCH DATA PROCESSING; COMPUTER AIDED DIAGNOSIS; DATA REDUCTION; FAULT DETECTION; MATHEMATICAL MODELS; PROCESS CONTROL; PROCESS MONITORING; SUPPORT VECTOR MACHINES;

EID: 84922368390     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2015.01.006     Document Type: Article
Times cited : (12)

References (46)
  • 1
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • J. Chen, K. Liu, On-line batch process monitoring using dynamic PCA and dynamic PLS models, Chem. Eng. Sci. 57 (1) (2002) 63-75.
    • (2002) Chem. Eng. Sci. , vol.57 , Issue.1 , pp. 63-75
    • Chen, J.1    Liu, K.2
  • 2
    • 36849039411 scopus 로고    scopus 로고
    • Dynamic model-based batch process monitoring
    • S. Choi, J. Morris, I.B. Lee, Dynamic model-based batch process monitoring, Chem. Eng. Sci. 63 (2008) 622-636.
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 622-636
    • Choi, S.1    Morris, J.2    Lee, I.B.3
  • 3
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processed based on dynamic independent component analysis
    • J. Lee, C. Yoo, I. Lee, Statistical monitoring of dynamic processed based on dynamic independent component analysis, Chem. Eng. Sci. 59 (2004) 2995-3006.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2995-3006
    • Lee, J.1    Yoo, C.2    Lee, I.3
  • 4
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J. Lee, C. Yoo, S. Choi, P. Vanrolleghem, I. Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59 (2004) 223-234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.1    Yoo, C.2    Choi, S.3    Vanrolleghem, P.4    Lee, I.5
  • 5
    • 77951299089 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring using an improved independent component analysis
    • L. Wang, H. Shi, Multivariate statistical process monitoring using an improved independent component analysis, Chem. Eng. Res. Des. 88 (2010) 403-414.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 403-414
    • Wang, L.1    Shi, H.2
  • 6
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • S. Qin, Survey on data-driven industrial process monitoring and diagnosis, Ann. Rev. Control 36 (2012) 220-234.
    • (2012) Ann. Rev. Control , vol.36 , pp. 220-234
    • Qin, S.1
  • 7
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: A missing link in multivariate quality control
    • P. Miller, R. Swanson, C. Heckler, Contribution plots: a missing link in multivariate quality control, Appl. Math. Comput. Sci. 8 (4) (1998) 775-792.
    • (1998) Appl. Math. Comput. Sci. , vol.8 , Issue.4 , pp. 775-792
    • Miller, P.1    Swanson, R.2    Heckler, C.3
  • 8
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • J. MacGregor, C. Jaeckle, C. Kiparissides, M. Koutoudi, Process monitoring and diagnosis by multiblock PLS methods, AIChE J. 40 (5) (1994) 826-838.
    • (1994) AIChE J. , vol.40 , Issue.5 , pp. 826-838
    • MacGregor, J.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 9
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • J. Westerhuis, S. Gurden, A. Smilde, Generalized contribution plots in multivariate statistical process monitoring, Chemom. Intell. Lab. 51 (1) (2000) 95-114.
    • (2000) Chemom. Intell. Lab. , vol.51 , Issue.1 , pp. 95-114
    • Westerhuis, J.1    Gurden, S.2    Smilde, A.3
  • 10
    • 84884928551 scopus 로고    scopus 로고
    • Analysis of smearing-out in contribution plot based fault isolation for statistical process control
    • P. Van den Kerkhof, J. Vanlaer, G. Gins, J. Van Impe, Analysis of smearing-out in contribution plot based fault isolation for statistical process control, Chem. Eng. Sci. 104 (2013) 285-293.
    • (2013) Chem. Eng. Sci. , vol.104 , pp. 285-293
    • Van Den Kerkhof, P.1    Vanlaer, J.2    Gins, G.3    Van Impe, J.4
  • 11
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal components analysis
    • L. Chiang, E. Russell, R. Braatz, Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal components analysis, Chemom. Intell. Lab. 50 (2000) 243-252.
    • (2000) Chemom. Intell. Lab. , vol.50 , pp. 243-252
    • Chiang, L.1    Russell, E.2    Braatz, R.3
  • 12
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • L. Chiang, M. Kotanchek, A. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines, Comput. Chem. Eng. 28 (2004) 1389-1401.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1389-1401
    • Chiang, L.1    Kotanchek, M.2    Kordon, A.3
  • 13
    • 56949099324 scopus 로고    scopus 로고
    • Performance assessment of a novel fault diagnosis system based on support vector machines
    • I. Yélamos, G. Escudero, M. Graells, L. Puigjaner, Performance assessment of a novel fault diagnosis system based on support vector machines, Comput. Chem. Eng. 33 (2009) 244-255.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 244-255
    • Yélamos, I.1    Escudero, G.2    Graells, M.3    Puigjaner, L.4
  • 14
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using oneclass support vector machines
    • S. Mahadevan, S. Shah, Fault detection and diagnosis in process data using oneclass support vector machines, J. Process Control 19 (2009) 1627-1639.
    • (2009) J. Process Control , vol.19 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.2
  • 15
    • 0034661359 scopus 로고    scopus 로고
    • Neural network based framework for fault diagnosis in batch chemical plants
    • D. Ruiz, J. Nougués, Z. Calderón, A.E. na, L. Puigjaner, Neural network based framework for fault diagnosis in batch chemical plants, Comput. Chem. Eng. 24 (2-7) (2000) 777-784.
    • (2000) Comput. Chem. Eng. , vol.24 , Issue.2-7 , pp. 777-784
    • Ruiz, D.1    Nougués, J.2    Calderón, Z.3    Na, A.E.4    Puigjaner, L.5
  • 16
    • 1342287327 scopus 로고    scopus 로고
    • Fault diagnosis of batch processes using discriminant model
    • H.W. Cho, K.J. Kim, Fault diagnosis of batch processes using discriminant model, Int. J. Prod. Res. 42 (3) (2004) 597-612.
    • (2004) Int. J. Prod. Res. , vol.42 , Issue.3 , pp. 597-612
    • Cho, H.W.1    Kim, K.J.2
  • 17
    • 27844551855 scopus 로고    scopus 로고
    • Diagnosing batch processes with insufficient fault data: Generation of pseudo batches
    • H.W. Cho, K.J. Kim, Diagnosing batch processes with insufficient fault data: generation of pseudo batches, Int. J. Prod. Res. 43 (14) (2005) 2997-3009.
    • (2005) Int. J. Prod. Res. , vol.43 , Issue.14 , pp. 2997-3009
    • Cho, H.W.1    Kim, K.J.2
  • 18
    • 33750429920 scopus 로고    scopus 로고
    • Nonlinear feature extraction and classification of multivariate process data in kernel feature space
    • H.W. Cho, Nonlinear feature extraction and classification of multivariate process data in kernel feature space, Expert Syst. Appl. 32 (2007) 534-542.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 534-542
    • Cho, H.W.1
  • 19
    • 56349114104 scopus 로고    scopus 로고
    • Improved kernel fisher discriminant analysis for fault diagnosis
    • J. Li, P. Cui, Improved kernel fisher discriminant analysis for fault diagnosis, Expert Syst. Appl. 36 (2009) 1423-1432.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1423-1432
    • Li, J.1    Cui, P.2
  • 20
    • 84861479593 scopus 로고    scopus 로고
    • Fault diagnosis of a benchmark fermentation process: A comparative study of feature extraction and classification techniques
    • I. Monroy, K. Villez, M. Graells, V. Venkatasubramanian, Fault diagnosis of a benchmark fermentation process: a comparative study of feature extraction and classification techniques, Bioprocess Biosyst. Eng. 35 (5) (2012) 689-704.
    • (2012) Bioprocess Biosyst. Eng. , vol.35 , Issue.5 , pp. 689-704
    • Monroy, I.1    Villez, K.2    Graells, M.3    Venkatasubramanian, V.4
  • 23
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: Penicillin production
    • G. Birol, C. Ündey, A. Çinar, A modular simulation package for fed-batch fermentation: penicillin production, Comput. Chem. Eng. 26 (2002) 1553-1565.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Çinar, A.3
  • 26
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • P. Nomikos, J. MacGregor, Monitoring batch processes using multiway principal component analysis, AIChE J. 40 (8) (1994) 1361-1375.
    • (1994) AIChE J. , vol.40 , Issue.8 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.2
  • 27
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • P. Nomikos, J.F. MacGregor, Multivariate SPC charts for monitoring batch processes, Technometrics 37 (1) (1995) 41-59.
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 28
    • 0033394063 scopus 로고    scopus 로고
    • Monitoring the performance of the paper making process
    • Y. Bissessur, E. Martin, A. Morris, Monitoring the performance of the paper making process, Control Eng. Pract. 7 (1999) 1357-1368.
    • (1999) Control Eng. Pract. , vol.7 , pp. 1357-1368
    • Bissessur, Y.1    Martin, E.2    Morris, A.3
  • 29
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • D. Dong, T. McAvoy, Nonlinear principal component analysis-based on principal curves and neural networks, Comput. Chem. Eng. 20 (1996) 65-78.
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.2
  • 30
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • S. Choi, J. Park, I. Lee, Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis, Comput. Chem. Eng. 28 (2004) 1377-1387.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.1    Park, J.2    Lee, I.3
  • 32
    • 84922383142 scopus 로고    scopus 로고
    • Online estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors
    • B. Lennox, G. Montague, H. Hiden, G. Kornfeld, P. Goulding, Online estimation of biomass, glucose and ethanol in Saccharomyces cerevisiae cultivations using in-situ multi-wavelength fluorescence and software sensors, J. Biotechnol. 144 (2009) 125-135.
    • (2009) J. Biotechnol. , vol.144 , pp. 125-135
    • Lennox, B.1    Montague, G.2    Hiden, H.3    Kornfeld, G.4    Goulding, P.5
  • 33
    • 84867563285 scopus 로고    scopus 로고
    • Discriminating between critical and non-critical disturbances in (bio-)chemical batch processes using multi-model fault detection and end-quality prediction
    • G. Gins, J. Vanlaer, J. Van Impe, Discriminating between critical and non-critical disturbances in (bio-)chemical batch processes using multi-model fault detection and end-quality prediction, Ind. Eng. Chem. Res. 51 (38) (2012) 12375-12385.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , Issue.38 , pp. 12375-12385
    • Gins, G.1    Vanlaer, J.2    Van Impe, J.3
  • 34
    • 84857675671 scopus 로고    scopus 로고
    • Dynamic model-based fault diagnosis for (bio)chemical batch processes
    • P. Van den Kerkhof, G. Gins, J. Vanlaer, J. Van Impe, Dynamic model-based fault diagnosis for (bio)chemical batch processes, Comput. Chem. Eng. 40 (2012) 12-21.
    • (2012) Comput. Chem. Eng. , vol.40 , pp. 12-21
    • Van Den Kerkhof, P.1    Gins, G.2    Vanlaer, J.3    Van Impe, J.4
  • 35
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Z. Ge, Z. Song, F. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52 (2013) 3543-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 38
    • 0028825273 scopus 로고
    • Multi-way partial least squares in monitoring batch processes
    • P. Nomikos, J.F. MacGregor, Multi-way partial least squares in monitoring batch processes, Chemom. Intell. Lab. 30 (1995) 97-108.
    • (1995) Chemom. Intell. Lab. , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 39
    • 0032517828 scopus 로고    scopus 로고
    • Modelling and diagnosis of batch processes and analogous kinetic experiments
    • S. Wold, N. Kettaneh, H. Fridén, A. Holmberg, Modelling and diagnosis of batch processes and analogous kinetic experiments, Chemom. Intell. Lab. 44 (1998) 331-340.
    • (1998) Chemom. Intell. Lab. , vol.44 , pp. 331-340
    • Wold, S.1    Kettaneh, N.2    Fridén, H.3    Holmberg, A.4
  • 40
    • 0037191154 scopus 로고    scopus 로고
    • Model selection for partial least squares regression
    • B. Li, J. Morris, E. Martin, Model selection for partial least squares regression, Chemom. Intell. Lab. 64 (1) (2002) 79-89.
    • (2002) Chemom. Intell. Lab. , vol.64 , Issue.1 , pp. 79-89
    • Li, B.1    Morris, J.2    Martin, E.3
  • 41
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • C. Stone, Consistent nonparametric regression, Ann. Stat. 5 (1977) 595-620.
    • (1977) Ann. Stat. , vol.5 , pp. 595-620
    • Stone, C.1
  • 44
    • 0029306995 scopus 로고
    • StatLog: Comparison of classification algorithms on large real-world problems
    • R. King, C. Feng, A. Sutherland, StatLog: comparison of classification algorithms on large real-world problems, Appl. Artif. Intell. 9 (3) (1995) 289-333.
    • (1995) Appl. Artif. Intell. , vol.9 , Issue.3 , pp. 289-333
    • King, R.1    Feng, C.2    Sutherland, A.3
  • 46
    • 53349142118 scopus 로고    scopus 로고
    • Application of principal component analysis for monitoring and disturbance detection of a hydrotreating process
    • S. Bezergianni, A. Kalogianni, Application of principal component analysis for monitoring and disturbance detection of a hydrotreating process Ind. Eng. Chem. Res. 47 (2008) 6972-6982.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 6972-6982
    • Bezergianni, S.1    Kalogianni, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.